General Information of the m6A Target Gene (ID: M6ATAR00375)
Target Name Mutated in multiple advanced cancers 1 (PTEN)
Synonyms
Mutated in multiple advanced cancers 1; Phosphatase and tensin homolog; MMAC1; TEP1
    Click to Show/Hide
Gene Name PTEN
Chromosomal Location 10q23.31
Family PTEN phosphatase protein family
Function
Tumor suppressor. Acts as a dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins. Also acts as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring from phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-diphosphate, phosphatidylinositol 3-phosphate and inositol 1,3,4,5-tetrakisphosphate with order of substrate preference in vitro PtdIns(3,4,5)P3 > PtdIns(3,4)P2 > PtdIns3P > Ins(1,3,4,5)P4. The lipid phosphatase activity is critical for its tumor suppressor function. Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival. The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation. Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation. Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability. In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement.; [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1.
    Click to Show/Hide
Gene ID 5728
Uniprot ID
PTEN_HUMAN
HGNC ID
HGNC:9588
Ensembl Gene ID
ENSG00000171862
KEGG ID
hsa:5728
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
PTEN can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line LX2 cell line Homo sapiens
Treatment: shMETTL3 LX2 cells
Control: shLuc LX2 cells
GSE207909
Regulation
logFC: 9.60E-01
p-value: 1.46E-37
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between PTEN and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 2.25E+00 GSE60213
In total 4 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and Mutated in multiple advanced cancers 1 (PTEN) mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT.
Target Regulation Up regulation
Responsed Disease Acute myeloid leukaemia ICD-11: 2A60
Cell Process Cell differentiation and apoptosis
Apoptosis (hsa04210)
In-vitro Model HSPC (Human hematopoietic stem cell)
In-vivo Model 500,000 selected cells were injected via tail vein or retro-orbital route into female NSG (6-8 week old) recipient mice that had been sublethally irradiated with 475 cGy one day before transplantation.
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary The molecular mechanism underlying the effect of LINC00470 on chronic myelocytic leukaemia by reducing the Mutated in multiple advanced cancers 1 (PTEN) stability via RNA methyltransferase METTL3, thus leading to the inhibition of cell autophagy while promoting chemoresistance in CML.
Target Regulation Down regulation
Responsed Disease Chronic myeloid leukaemia ICD-11: 2B33.2
Pathway Response Autophagy hsa04140
Cell Process RNA stability
Cell autophagy
In-vitro Model K-562 Chronic myelogenous leukemia Homo sapiens CVCL_0004
KCL-22 Chronic myelogenous leukemia Homo sapiens CVCL_2091
In-vivo Model In the control mice or ADR mice group, the parental or chemo-resistant K562 cells were infected with LV-shCtrl. In the ADR + shLINC00470 group, the chemo-resistant K562 cells were infected with LV- shLINC00470. These cells were injected, respectively, into these 5-week-old mice subcutaneously.
Experiment 3 Reporting the m6A Methylation Regulator of This Target Gene [3]
Response Summary Bete-elemene exerted the restrictive impacts on the cell growth of lung cancer in vivo and in vitro through targeting METTL3. Bete-elemene contributed to the augmented PTEN expression via suppressing its m6A modification.
Target Regulation Down regulation
Responsed Disease Lung cancer ICD-11: 2C25
In-vitro Model NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
In-vivo Model Four-week-old BALB/c nude mice were randomly divided into three groups: (1) vector group, (2) vector + Bete-elemene group, and (3) Bete-elemene + METTL3 group. Nude mice were raised in an SPF level animal house and were free to eat and drink. Mice in the vector group were subcutaneously injected with lung cancer cells transfected with empty vector and did not receive Bete-elemene administration, and this group was implemented as the negative control. Following establishing orthotopic xenografts by using A549 or H1299 cells transfected with empty vector, mice in the vector + Bete-elemene group underwent intraperitoneal injection with Bete-elemene once a day. For the subcutaneous transplanted model, A549 or H1299 cells transfected with METTL3-overexpressing vector were inoculated into mice from the Bete-elemene + METTL3 group. Then, mice were intraperitoneally administrated with Bete-elemene once a day. Three weeks later, all the animals were euthanized with CO2. Xenografts were removed and weighted after mice were euthanatized.
Experiment 4 Reporting the m6A Methylation Regulator of This Target Gene [4]
Response Summary METTL3/YTHDF2/Mutated in multiple advanced cancers 1 (PTEN) axis exerts a significant role in hypoxia induced PASMCs proliferation, providing a novel therapeutic target for hypoxic pulmonary hypertension.
Target Regulation Down regulation
Responsed Disease Pulmonary hypertension due to lung disease or hypoxia ICD-11: BB01.2
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Cell apoptosis
In-vitro Model PASMC cell line (Pulmonary artery smooth muscle cell)
In-vivo Model 10 rats were divided into control and HPH group. In detail, 5 rats of the hypoxia groups were exposed to hypoxia (10%O2) chamber (AiPu XBS-02B, China) for 4 weeks. In addition, 5 rats of control group were kept under normoxic conditions (21% O2) for 4 weeks. Rats were housed in standard polypropylene cages under controlled photocycle (12 h light/12 h dark) under 22-25 ℃ temperature.
Methyltransferase-like 14 (METTL14) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL14
Cell Line HepG2 cell line Homo sapiens
Treatment: shMETTL14 HepG2 cells
Control: shCtrl HepG2 cells
GSE121949
Regulation
logFC: -9.93E-01
p-value: 1.46E-04
More Results Click to View More RNA-seq Results
In total 3 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [5]
Response Summary METTL14 inhibits tumor growth and metastasis of Stomach Adenocarcinoma via stabilization of Mutated in multiple advanced cancers 1 (PTEN) mRNA expression. Therefore, METTL14 is a potential biomarker of prognosis and therapeutic targets for Stomach Adenocarcinoma.
Target Regulation Up regulation
Responsed Disease Gastric cancer ICD-11: 2B72.Z
Cell Process Cell proliferation
Cell migration
Cell invasion
In-vitro Model RGM1 Normal Rattus norvegicus CVCL_0499
HGC-27 Gastric carcinoma Homo sapiens CVCL_1279
BGC-823 Gastric carcinoma Homo sapiens CVCL_3360
AGS Gastric adenocarcinoma Homo sapiens CVCL_0139
In-vivo Model For the purpose of enhancing the overall randomization of the experiment, a random comparison table had been employed. Accordingly, 5-wk-old male nude athymic BALB/c nu/nu mice (Slack, Shanghai, China) were randomly divided into two parts including a control group (NC) and the experimental group METTL14-OE. For developing subcutaneous xeno transplantation model, 5 × 106 HGC-27 cells stably transfected with NC or METTL14 overexpression were subcutaneously incorporated for 5-week-old BALB/c nude mice. The mice experienced euthanasia after 27 days of inoculation and obtained xenografts's mass was obtained. Tumor volume over three days was obtained. To create mouse STAD liver metastasis orthotopic tumor model, 1 × 106 HGC-27 cells under stable transfection with NC or METTL14 overexpression were added to subserosal gastric wall of BALB/c nude mice.
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [6]
Response Summary Upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. Overexpression of METTL14 increased the m6A enrichment of Mutated in multiple advanced cancers 1 (PTEN), and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1.
Target Regulation Up regulation
Responsed Disease Renal cell carcinoma of kidney ICD-11: 2C90.0
Pathway Response PI3K-Akt signaling pathway hsa04151
Experiment 3 Reporting the m6A Methylation Regulator of This Target Gene [7]
Response Summary METTL14-regulated PI3K/Akt signaling pathway via Mutated in multiple advanced cancers 1 (PTEN) affected HDAC5-mediated EMT of renal tubular cells in diabetic kidney disease.
Target Regulation Down regulation
Responsed Disease Chronic kidney disease ICD-11: GB61.Z
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Epithelial-mesenchymal transition
In-vitro Model HK-2 [Human kidney] Normal Homo sapiens CVCL_0302
In-vivo Model Twenty mice were randomly divided into three groups: normal mice group (N), diabetic mice group (DM), and diabetic mice administrated with TSA group (DM + TSA).
RNA demethylase ALKBH5 (ALKBH5) [ERASER]
Representative RNA-seq result indicating the expression of this target gene regulated by ALKBH5
Cell Line MOLM-13 cell line Homo sapiens
Treatment: shALKBH5 MOLM-13 cells
Control: shNS MOLM-13 cells
GSE144968
Regulation
logFC: -2.10E+00
p-value: 1.89E-02
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [8]
Response Summary ALKBH5-mediated m6A demethylation enhanced the stability of KCNK15-AS1. In pancreatic cancer, KCNK15-AS1 bound to KCNK15 to inhibit its translation, and interacted with MDM2 to induce REST ubiquitination, which eventually facilitated Mutated in multiple advanced cancers 1 (PTEN) transcription to inactivate AKT pathway.
Responsed Disease Pancreatic cancer ICD-11: 2C10
Pathway Response .PI3K-Akt signaling pathway hsa04151
Cell Process Cell proliferation
Cell migration
Epithelial-mesenchymal transition
Cell apoptosis
In-vitro Model BxPC-3 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0186
CFPAC-1 Cystic fibrosis Homo sapiens CVCL_1119
MIA PaCa-2 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0428
PANC-1 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0480
YTH domain-containing protein 1 (YTHDC1) [READER]
Representative RNA-seq result indicating the expression of this target gene regulated by YTHDC1
Cell Line MOLM-13 cell line Homo sapiens
Treatment: shYTHDC1 MOLM13 cells
Control: shControl MOLM13 cells
GSE168565
Regulation
logFC: 7.38E-01
p-value: 4.67E-08
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [9]
Response Summary YTHDC1 promoted Mutated in multiple advanced cancers 1 (PTEN) mRNA degradation to increase Akt phosphorylation, thus facilitating neuronal survival in particular after ischemia, modulating m6A reader YTHDC1 provide a potential therapeutic target for ischemic stroke.
Target Regulation Down regulation
Responsed Disease Acute ischemic stroke ICD-11: 8B11
In-vitro Model HEK293T Normal Homo sapiens CVCL_0063
In-vivo Model Male SD rats weighing 200-250 g were anesthetized using 4% isoflurane in 70% N2O and 30% O2 with a mask. A midline incision was made in the neck, the left external carotid artery (ECA) was carefully exposed and dissected, a monofilament nylon suture with a diameter of about 0.22 mm was inserted from the ECA into the internal carotid artery, and the left middle cerebral artery (MCA) was blocked. After occlusion for 90 minutes, the suture was removed for reperfusion, and ECA was ligated to close the wound. Sham-operated rats underwent the same surgery except for suture insertion. Rats were maintained on top of a warming pad (RWD, 69003) during the above procedures. The breathing machine was used to monitor the respiration of rats. The rats were returned to a heated cage during the recovery phase with free access to food and water.
YTH domain-containing family protein 1 (YTHDF1) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [6]
Response Summary Upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. Overexpression of METTL14 increased the m6A enrichment of Mutated in multiple advanced cancers 1 (PTEN), and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1.
Target Regulation Up regulation
Responsed Disease Renal cell carcinoma of kidney ICD-11: 2C90.0
Pathway Response PI3K-Akt signaling pathway hsa04151
YTH domain-containing family protein 2 (YTHDF2) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [4]
Response Summary METTL3/YTHDF2/Mutated in multiple advanced cancers 1 (PTEN) axis exerts a significant role in hypoxia induced PASMCs proliferation, providing a novel therapeutic target for hypoxic pulmonary hypertension.
Target Regulation Down regulation
Responsed Disease Pulmonary hypertension due to lung disease or hypoxia ICD-11: BB01.2
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Cell apoptosis
In-vitro Model PASMC cell line (Pulmonary artery smooth muscle cell)
In-vivo Model 10 rats were divided into control and HPH group. In detail, 5 rats of the hypoxia groups were exposed to hypoxia (10%O2) chamber (AiPu XBS-02B, China) for 4 weeks. In addition, 5 rats of control group were kept under normoxic conditions (21% O2) for 4 weeks. Rats were housed in standard polypropylene cages under controlled photocycle (12 h light/12 h dark) under 22-25 ℃ temperature.
Solid tumour/cancer [ICD-11: 2A00-2F9Z]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response []
Response Summary In this review, we discuss the specific roles of m6A "writers", "erasers", and "readers" in normal physiology and how their altered expression promotes tumorigenesis. We also describe the potential of exploiting the aberrant expression of these enzymes for cancer diagnosis, prognosis, and the development of novel therapies. The abnormal expression of m6A regulatory enzymes affects m6A abundance and consequently dysregulates the expression of tumor suppressor genes and oncogenes, including MYC, SOCS2, ADAM19, and Mutated in multiple advanced cancers 1 (PTEN).
Responsed Disease Solid tumour/cancer [ICD-11: 2A00-2F9Z]
Acute myeloid leukaemia [ICD-11: 2A60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and Mutated in multiple advanced cancers 1 (PTEN) mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT.
Responsed Disease Acute myeloid leukaemia [ICD-11: 2A60]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Cell differentiation and apoptosis
Apoptosis (hsa04210)
In-vitro Model HSPC (Human hematopoietic stem cell)
In-vivo Model 500,000 selected cells were injected via tail vein or retro-orbital route into female NSG (6-8 week old) recipient mice that had been sublethally irradiated with 475 cGy one day before transplantation.
Malignant haematopoietic neoplasm [ICD-11: 2B33]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary The molecular mechanism underlying the effect of LINC00470 on chronic myelocytic leukaemia by reducing the Mutated in multiple advanced cancers 1 (PTEN) stability via RNA methyltransferase METTL3, thus leading to the inhibition of cell autophagy while promoting chemoresistance in CML.
Responsed Disease Chronic myeloid leukaemia [ICD-11: 2B33.2]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Down regulation
Pathway Response Autophagy hsa04140
Cell Process RNA stability
Cell autophagy
In-vitro Model K-562 Chronic myelogenous leukemia Homo sapiens CVCL_0004
KCL-22 Chronic myelogenous leukemia Homo sapiens CVCL_2091
In-vivo Model In the control mice or ADR mice group, the parental or chemo-resistant K562 cells were infected with LV-shCtrl. In the ADR + shLINC00470 group, the chemo-resistant K562 cells were infected with LV- shLINC00470. These cells were injected, respectively, into these 5-week-old mice subcutaneously.
Gastric cancer [ICD-11: 2B72]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [5]
Response Summary METTL14 inhibits tumor growth and metastasis of Stomach Adenocarcinoma via stabilization of Mutated in multiple advanced cancers 1 (PTEN) mRNA expression. Therefore, METTL14 is a potential biomarker of prognosis and therapeutic targets for Stomach Adenocarcinoma.
Responsed Disease Gastric cancer [ICD-11: 2B72.Z]
Target Regulator Methyltransferase-like 14 (METTL14) WRITER
Target Regulation Up regulation
Cell Process Cell proliferation
Cell migration
Cell invasion
In-vitro Model RGM1 Normal Rattus norvegicus CVCL_0499
HGC-27 Gastric carcinoma Homo sapiens CVCL_1279
BGC-823 Gastric carcinoma Homo sapiens CVCL_3360
AGS Gastric adenocarcinoma Homo sapiens CVCL_0139
In-vivo Model For the purpose of enhancing the overall randomization of the experiment, a random comparison table had been employed. Accordingly, 5-wk-old male nude athymic BALB/c nu/nu mice (Slack, Shanghai, China) were randomly divided into two parts including a control group (NC) and the experimental group METTL14-OE. For developing subcutaneous xeno transplantation model, 5 × 106 HGC-27 cells stably transfected with NC or METTL14 overexpression were subcutaneously incorporated for 5-week-old BALB/c nude mice. The mice experienced euthanasia after 27 days of inoculation and obtained xenografts's mass was obtained. Tumor volume over three days was obtained. To create mouse STAD liver metastasis orthotopic tumor model, 1 × 106 HGC-27 cells under stable transfection with NC or METTL14 overexpression were added to subserosal gastric wall of BALB/c nude mice.
Pancreatic cancer [ICD-11: 2C10]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [8]
Response Summary ALKBH5-mediated m6A demethylation enhanced the stability of KCNK15-AS1. In pancreatic cancer, KCNK15-AS1 bound to KCNK15 to inhibit its translation, and interacted with MDM2 to induce REST ubiquitination, which eventually facilitated Mutated in multiple advanced cancers 1 (PTEN) transcription to inactivate AKT pathway.
Responsed Disease Pancreatic cancer [ICD-11: 2C10]
Target Regulator RNA demethylase ALKBH5 (ALKBH5) ERASER
Pathway Response .PI3K-Akt signaling pathway hsa04151
Cell Process Cell proliferation
Cell migration
Epithelial-mesenchymal transition
Cell apoptosis
In-vitro Model BxPC-3 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0186
CFPAC-1 Cystic fibrosis Homo sapiens CVCL_1119
MIA PaCa-2 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0428
PANC-1 Pancreatic ductal adenocarcinoma Homo sapiens CVCL_0480
Lung cancer [ICD-11: 2C25]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [3]
Response Summary Bete-elemene exerted the restrictive impacts on the cell growth of lung cancer in vivo and in vitro through targeting METTL3. Bete-elemene contributed to the augmented PTEN expression via suppressing its m6A modification.
Responsed Disease Lung cancer [ICD-11: 2C25]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Down regulation
In-vitro Model NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
In-vivo Model Four-week-old BALB/c nude mice were randomly divided into three groups: (1) vector group, (2) vector + Bete-elemene group, and (3) Bete-elemene + METTL3 group. Nude mice were raised in an SPF level animal house and were free to eat and drink. Mice in the vector group were subcutaneously injected with lung cancer cells transfected with empty vector and did not receive Bete-elemene administration, and this group was implemented as the negative control. Following establishing orthotopic xenografts by using A549 or H1299 cells transfected with empty vector, mice in the vector + Bete-elemene group underwent intraperitoneal injection with Bete-elemene once a day. For the subcutaneous transplanted model, A549 or H1299 cells transfected with METTL3-overexpressing vector were inoculated into mice from the Bete-elemene + METTL3 group. Then, mice were intraperitoneally administrated with Bete-elemene once a day. Three weeks later, all the animals were euthanized with CO2. Xenografts were removed and weighted after mice were euthanatized.
Renal cell carcinoma [ICD-11: 2C90]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [6]
Response Summary Upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. Overexpression of METTL14 increased the m6A enrichment of Mutated in multiple advanced cancers 1 (PTEN), and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1.
Responsed Disease Renal cell carcinoma of kidney [ICD-11: 2C90.0]
Target Regulator Methyltransferase-like 14 (METTL14) WRITER
Target Regulation Up regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Experiment 2 Reporting the m6A-centered Disease Response [6]
Response Summary Upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. Overexpression of METTL14 increased the m6A enrichment of Mutated in multiple advanced cancers 1 (PTEN), and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1.
Responsed Disease Renal cell carcinoma of kidney [ICD-11: 2C90.0]
Target Regulator YTH domain-containing family protein 1 (YTHDF1) READER
Target Regulation Up regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Acute ischemic stroke [ICD-11: 8B11]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [9]
Response Summary YTHDC1 promoted Mutated in multiple advanced cancers 1 (PTEN) mRNA degradation to increase Akt phosphorylation, thus facilitating neuronal survival in particular after ischemia, modulating m6A reader YTHDC1 provide a potential therapeutic target for ischemic stroke.
Responsed Disease Acute ischemic stroke [ICD-11: 8B11]
Target Regulator YTH domain-containing protein 1 (YTHDC1) READER
Target Regulation Down regulation
In-vitro Model HEK293T Normal Homo sapiens CVCL_0063
In-vivo Model Male SD rats weighing 200-250 g were anesthetized using 4% isoflurane in 70% N2O and 30% O2 with a mask. A midline incision was made in the neck, the left external carotid artery (ECA) was carefully exposed and dissected, a monofilament nylon suture with a diameter of about 0.22 mm was inserted from the ECA into the internal carotid artery, and the left middle cerebral artery (MCA) was blocked. After occlusion for 90 minutes, the suture was removed for reperfusion, and ECA was ligated to close the wound. Sham-operated rats underwent the same surgery except for suture insertion. Rats were maintained on top of a warming pad (RWD, 69003) during the above procedures. The breathing machine was used to monitor the respiration of rats. The rats were returned to a heated cage during the recovery phase with free access to food and water.
Pulmonary hypertension [ICD-11: BB01]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [4]
Response Summary METTL3/YTHDF2/Mutated in multiple advanced cancers 1 (PTEN) axis exerts a significant role in hypoxia induced PASMCs proliferation, providing a novel therapeutic target for hypoxic pulmonary hypertension.
Responsed Disease Pulmonary hypertension due to lung disease or hypoxia [ICD-11: BB01.2]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Down regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Cell apoptosis
In-vitro Model PASMC cell line (Pulmonary artery smooth muscle cell)
In-vivo Model 10 rats were divided into control and HPH group. In detail, 5 rats of the hypoxia groups were exposed to hypoxia (10%O2) chamber (AiPu XBS-02B, China) for 4 weeks. In addition, 5 rats of control group were kept under normoxic conditions (21% O2) for 4 weeks. Rats were housed in standard polypropylene cages under controlled photocycle (12 h light/12 h dark) under 22-25 ℃ temperature.
Experiment 2 Reporting the m6A-centered Disease Response [4]
Response Summary METTL3/YTHDF2/Mutated in multiple advanced cancers 1 (PTEN) axis exerts a significant role in hypoxia induced PASMCs proliferation, providing a novel therapeutic target for hypoxic pulmonary hypertension.
Responsed Disease Pulmonary hypertension due to lung disease or hypoxia [ICD-11: BB01.2]
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Cell apoptosis
In-vitro Model PASMC cell line (Pulmonary artery smooth muscle cell)
In-vivo Model 10 rats were divided into control and HPH group. In detail, 5 rats of the hypoxia groups were exposed to hypoxia (10%O2) chamber (AiPu XBS-02B, China) for 4 weeks. In addition, 5 rats of control group were kept under normoxic conditions (21% O2) for 4 weeks. Rats were housed in standard polypropylene cages under controlled photocycle (12 h light/12 h dark) under 22-25 ℃ temperature.
Chronic kidney disease [ICD-11: GB61]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [7]
Response Summary METTL14-regulated PI3K/Akt signaling pathway via Mutated in multiple advanced cancers 1 (PTEN) affected HDAC5-mediated EMT of renal tubular cells in diabetic kidney disease.
Responsed Disease Chronic kidney disease [ICD-11: GB61.Z]
Target Regulator Methyltransferase-like 14 (METTL14) WRITER
Target Regulation Down regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process Epithelial-mesenchymal transition
In-vitro Model HK-2 [Human kidney] Normal Homo sapiens CVCL_0302
In-vivo Model Twenty mice were randomly divided into three groups: normal mice group (N), diabetic mice group (DM), and diabetic mice administrated with TSA group (DM + TSA).
References
Ref 1 The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017 Nov;23(11):1369-1376. doi: 10.1038/nm.4416. Epub 2017 Sep 18.
Ref 2 Dysregulation of LINC00470 and METTL3 promotes chemoresistance and suppresses autophagy of chronic myelocytic leukaemia cells. J Cell Mol Med. 2021 May;25(9):4248-4259. doi: 10.1111/jcmm.16478. Epub 2021 Mar 21.
Ref 3 Beta-Elemene Restrains PTEN mRNA Degradation to Restrain the Growth of Lung Cancer Cells via METTL3-Mediated N(6) Methyladenosine Modification. J Oncol. 2022 Jan 12;2022:3472745. doi: 10.1155/2022/3472745. eCollection 2022.
Ref 4 The m(6)A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci. 2021 Jun 1;274:119366. doi: 10.1016/j.lfs.2021.119366. Epub 2021 Mar 16.
Ref 5 The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma. Front Oncol. 2021 Aug 12;11:699749. doi: 10.3389/fonc.2021.699749. eCollection 2021.
Ref 6 METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022 Jul;127(1):30-42. doi: 10.1038/s41416-022-01757-y. Epub 2022 Mar 5.
Ref 7 METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis. 2021 Jan 4;12(1):32. doi: 10.1038/s41419-020-03312-0.
Ref 8 ALKBH5-mediated m(6)A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis. 2021 Dec 1;12(12):1121. doi: 10.1038/s41419-021-04401-4.
Ref 9 YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis. 2020 Nov 13;11(11):977. doi: 10.1038/s41419-020-03186-2.