General Information of the m6A Target Gene (ID: M6ATAR00185)
Target Name Cyclic AMP-dependent transcription factor ATF-4 (ATF4)
Synonyms
cAMP-dependent transcription factor ATF-4; Activating transcription factor 4; Cyclic AMP-responsive element-binding protein 2; CREB-2; cAMP-responsive element-binding protein 2; Tax-responsive enhancer element-binding protein 67; TaxREB67; CREB2; TXREB
    Click to Show/Hide
Gene Name ATF4
Chromosomal Location 22q13.1
Family bZIP family
Function
Transcription factor that binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3') and displays two biological functions, as regulator of metabolic and redox processes under normal cellular conditions, and as master transcription factor during integrated stress response (ISR). Binds to asymmetric CRE's as a heterodimer and to palindromic CRE's as a homodimer (By similarity). Core effector of the ISR, which is required for adaptation to various stress such as endoplasmic reticulum (ER) stress, amino acid starvation, mitochondrial stress or oxidative stress. During ISR, ATF4 translation is induced via an alternative ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced ATF4 acts as a master transcription factor of stress-responsive genes in order to promote cell recovery. Promotes the transcription of genes linked to amino acid sufficiency and resistance to oxidative stress to protect cells against metabolic consequences of ER oxidation (By similarity). Activates the transcription of NLRP1, possibly in concert with other factors in response to ER stress. Activates the transcription of asparagine synthetase (ASNS) in response to amino acid deprivation or ER stress. However, when associated with DDIT3/CHOP, the transcriptional activation of the ASNS gene is inhibited in response to amino acid deprivation. Together with DDIT3/CHOP, mediates programmed cell death by promoting the expression of genes involved in cellular amino acid metabolic processes, mRNA translation and the terminal unfolded protein response (terminal UPR), a cellular response that elicits programmed cell death when ER stress is prolonged and unresolved (By similarity). Together with DDIT3/CHOP, activates the transcription of the IRS-regulator TRIB3 and promotes ER stress-induced neuronal cell death by regulating the expression of BBC3/PUMA in response to ER stress. May cooperate with the UPR transcriptional regulator QRICH1 to regulate ER protein homeostasis which is critical for cell viability in response to ER stress. In the absence of stress, ATF4 translation is at low levels and it is required for normal metabolic processes such as embryonic lens formation, fetal liver hematopoiesis, bone development and synaptic plasticity (By similarity). Acts as a regulator of osteoblast differentiation in response to phosphorylation by RPS6KA3/RSK2: phosphorylation in osteoblasts enhances transactivation activity and promotes expression of osteoblast-specific genes and post-transcriptionally regulates the synthesis of Type I collagen, the main constituent of the bone matrix. Cooperates with FOXO1 in osteoblasts to regulate glucose homeostasis through suppression of beta-cell production and decrease in insulin production (By similarity). Activates transcription of SIRT4 (By similarity). Regulates the circadian expression of the core clock component PER2 and the serotonin transporter SLC6A4 (By similarity). Binds in a circadian time-dependent manner to the cAMP response elements (CRE) in the SLC6A4 and PER2 promoters and periodically activates the transcription of these genes (By similarity). Mainly acts as a transcriptional activator in cellular stress adaptation, but it can also act as a transcriptional repressor: acts as a regulator of synaptic plasticity by repressing transcription, thereby inhibiting induction and maintenance of long-term memory (By similarity). Regulates synaptic functions via interaction with DISC1 in neurons, which inhibits ATF4 transcription factor activity by disrupting ATF4 dimerization and DNA-binding .
    Click to Show/Hide
Gene ID 468
Uniprot ID
ATF4_HUMAN
HGNC ID
HGNC:786
Ensembl Gene ID
ENSG00000128272
KEGG ID
hsa:468
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
ATF4 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
Fat mass and obesity-associated protein (FTO) [ERASER]
Representative RNA-seq result indicating the expression of this target gene regulated by FTO
Cell Line 253J cell line Homo sapiens
Treatment: siFTO 253J cells
Control: 253J cells
GSE150239
Regulation
logFC: -1.42E+00
p-value: 2.68E-47
More Results Click to View More RNA-seq Results
In total 4 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Asparagine inhibitor Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Chloroquine Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 3 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Meclofenamate sodium Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 4 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug CB-839 Phase 2
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Wilms tumor 1-associating protein (WTAP) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by WTAP
Cell Line mice hepatocyte Mus musculus
Treatment: Wtap Hknockout mice hepatocyte
Control: Wtap flox/flox mice hepatocyte
GSE168850
Regulation
logFC: 7.14E-01
p-value: 2.43E-02
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary Myocardial infarction (MI) is one of the leading causes of death. WTAP promoted myocardial I/R injury through promoting ER stress and cell apoptosis by regulating m6A modification of Cyclic AMP-dependent transcription factor ATF-4 (ATF4) mRNA. H/R effects on ER stress and apoptosis were all blocked by silencing of WTAP, promoted by WTAP overexpression, and ameliorated by administration of ER stress inhibitor, 4-PBA.
Target Regulation Up regulation
Responsed Disease Acute myocardial infarction ICD-11: BA41
Cell Process Endoplasmic reticulum stress
Cell apoptosis
In-vitro Model AC16 [Human hybrid cardiomyocyte] Normal Homo sapiens CVCL_4U18
In-vivo Model Left anterior descending coronary artery (LAD) was ligated for 20 minutes, followed by 48 h reperfusion. Controls underwent same procedures except LAD ligation. WTAP shRNA vector or its negative control (shNC) was injected into the left ventricular anterior wall 24 h before I/R. A pressure volume catheter was used for cardiac function assay.
YTH domain-containing family protein 2 (YTHDF2) [READER]
In total 4 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Asparagine inhibitor Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Chloroquine Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 3 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug Meclofenamate sodium Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 4 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Responsed Drug CB-839 Phase 2
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Colorectal cancer [ICD-11: 2B91]
In total 4 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer [ICD-11: 2B91]
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Drug Asparagine inhibitor Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer [ICD-11: 2B91]
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Drug Chloroquine Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 3 Reporting the m6A-centered Disease Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer [ICD-11: 2B91]
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Drug Meclofenamate sodium Approved
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 4 Reporting the m6A-centered Disease Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Responsed Disease Colorectal cancer [ICD-11: 2B91]
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Drug CB-839 Phase 2
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Acute myocardial infarction [ICD-11: BA41]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary Myocardial infarction (MI) is one of the leading causes of death. WTAP promoted myocardial I/R injury through promoting ER stress and cell apoptosis by regulating m6A modification of Cyclic AMP-dependent transcription factor ATF-4 (ATF4) mRNA. H/R effects on ER stress and apoptosis were all blocked by silencing of WTAP, promoted by WTAP overexpression, and ameliorated by administration of ER stress inhibitor, 4-PBA.
Responsed Disease Acute myocardial infarction [ICD-11: BA41]
Target Regulator Wilms tumor 1-associating protein (WTAP) WRITER
Target Regulation Up regulation
Cell Process Endoplasmic reticulum stress
Cell apoptosis
In-vitro Model AC16 [Human hybrid cardiomyocyte] Normal Homo sapiens CVCL_4U18
In-vivo Model Left anterior descending coronary artery (LAD) was ligated for 20 minutes, followed by 48 h reperfusion. Controls underwent same procedures except LAD ligation. WTAP shRNA vector or its negative control (shNC) was injected into the left ventricular anterior wall 24 h before I/R. A pressure volume catheter was used for cardiac function assay.
Asparagine inhibitor [Approved]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Chloroquine [Approved]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Meclofenamate sodium [Approved]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Rapamycin [Approved]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
CB-839 [Phase 2]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. Cyclic AMP-dependent transcription factor ATF-4 (ATF4) transcriptionally upregulated DDIT4 to suppress mTOR, which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
GLS-IN-968 [Investigative]
In total 2 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator Fat mass and obesity-associated protein (FTO) ERASER
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary In colorectal cancer, Glutaminolysis inhibition upregulated ATF4 expression in an m6A-dependent manner to activate pro-survival autophagy through transcriptional activation of the mTOR inhibitor DDIT4. Determined the relationship between FTO alpha-ketoglutarate dependent dioxygenase (FTO), YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), and ATF4. ATF4 transcriptionally upregulated DDIT4 to suppress Cyclic AMP-dependent transcription factor ATF-4 (ATF4), which induced pro-survival autophagy during glutaminolysis inhibition.
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response mTOR signaling pathway hsa04150
Cell Process RNA decay
Cell growth and death
Cell autophagy
In-vitro Model HCT 116 Colon carcinoma Homo sapiens CVCL_0291
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
References
Ref 1 Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics. 2021 Jul 25;11(17):8464-8479. doi: 10.7150/thno.60028. eCollection 2021.
Ref 2 WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m(6)A modification of ATF4 mRNA. Aging (Albany NY). 2021 Mar 26;13(8):11135-11149. doi: 10.18632/aging.202770. Epub 2021 Mar 26.