General Information of the m6A Target Gene (ID: M6ATAR00465)
Target Name hsa-miR-1914-3p
Gene Name hsa-miR-1914-3p
miRBase ID
MIMAT0007890
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
hsa-miR-1914-3p can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
Methyltransferase-like 3 (METTL3) [WRITER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
YTH domain-containing family protein 1 (YTHDF1) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
YTH domain-containing family protein 3 (YTHDF3) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Lung cancer [ICD-11: 2C25]
In total 3 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator YTH domain-containing family protein 1 (YTHDF1) READER
Target Regulation Up regulation
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Experiment 3 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator YTH domain-containing family protein 3 (YTHDF3) READER
Target Regulation Up regulation
Responsed Drug Cisplatin Approved
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Cisplatin [Approved]
In total 3 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Experiment 2 Reporting the m6A-centered Drug Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulator YTH domain-containing family protein 1 (YTHDF1) READER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
Experiment 3 Reporting the m6A-centered Drug Response [1]
Response Summary METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-hsa-miR-1914-3p-YAP axis to induce Non-small cell lung cancer drug resistance and metastasis.
Target Regulator YTH domain-containing family protein 3 (YTHDF3) READER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Hippo signaling pathway hsa04390
Cell Process Metabolic
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
Calu-6 Lung adenocarcinoma Homo sapiens CVCL_0236
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
In-vivo Model Mice were injected with 5 × 106 lung cancer cells with stably expression of relevant plasmids and randomly divided into two groups (five mice per group) after the diameter of the xenografted tumors had reached approximately 5 mm in diameter. Xenografted mice were then administrated with PBS or DDP (3 mg/kg per day) for three times a week, and tumor volume were measured every second day.
References
Ref 1 m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019 Dec 9;12(1):135. doi: 10.1186/s13045-019-0830-6.