General Information of the m6A Target Gene (ID: M6ATAR00148)
Target Name Growth arrest specific 5 (GAS5)
Synonyms
GAS5; growth arrest specific 5 (non-protein coding); SNHG2; NCRNA00030; small nucleolar RNA host gene (non-protein coding) 2; non-protein coding RNA 30
    Click to Show/Hide
Gene Name GAS5
Chromosomal Location 1q25.1
Family Small nucleolar RNA non-coding host genes; Long non-coding RNAs with non-systematic symbols
Gene ID 60674
HGNC ID
HGNC:16355
Ensembl Gene ID
ENSG00000234741
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
GAS5 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
RNA demethylase ALKBH5 (ALKBH5) [ERASER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary The GAS5-AS1 expression in cervical cancer tissues was markedly decreased when compared with that in the adjacent normal tissues. GAS5-AS1 interacted with the tumor suppressor Growth arrest specific 5 (GAS5), and increased its stability by interacting with RNA demethylase ALKBH5 and decreasing GAS5 N6-methyladenosine (m6A) modification. m6A-mediated GAS5 RNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.
Target Regulation Up regulation
Responsed Disease Cervical cancer ICD-11: 2C77
Cell Process Cell proliferation and metastasis
In-vitro Model C-33 A Cervical squamous cell carcinoma Homo sapiens CVCL_1094
Ca Ski Cervical squamous cell carcinoma Homo sapiens CVCL_1100
HeLa Endocervical adenocarcinoma Homo sapiens CVCL_0030
SiHa Cervical squamous cell carcinoma Homo sapiens CVCL_0032
Normal cervical epithelium cell line (HCvEpC) (Isolated from cervical tissue)
In-vivo Model 200 uL PBS containing 1×107 cells of stable cells were subcutaneously injected into male BALB/c athymic nude mice (6-week old, 18-20 g).
YTH domain-containing family protein 2 (YTHDF2) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary The GAS5-AS1 expression in cervical cancer tissues was markedly decreased when compared with that in the adjacent normal tissues. GAS5-AS1 interacted with the tumor suppressor Growth arrest specific 5 (GAS5), and increased its stability by interacting with RNA demethylase ALKBH5 and decreasing GAS5 N6-methyladenosine (m6A) modification. m6A-mediated GAS5 RNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.
Target Regulation Up regulation
Responsed Disease Cervical cancer ICD-11: 2C77
Cell Process Cell proliferation and metastasis
In-vitro Model C-33 A Cervical squamous cell carcinoma Homo sapiens CVCL_1094
Ca Ski Cervical squamous cell carcinoma Homo sapiens CVCL_1100
HeLa Endocervical adenocarcinoma Homo sapiens CVCL_0030
SiHa Cervical squamous cell carcinoma Homo sapiens CVCL_0032
Normal cervical epithelium cell line (HCvEpC) (Isolated from cervical tissue)
In-vivo Model 200 uL PBS containing 1×107 cells of stable cells were subcutaneously injected into male BALB/c athymic nude mice (6-week old, 18-20 g).
YTH domain-containing family protein 3 (YTHDF3) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary A new mechanism for m6A-induced decay of Growth arrest specific 5 (GAS5) on YAP signaling in progression of Colorectal cancer which offers a promising approach for CRC treatment. LncRNA GAS5 expressions is negatively correlated with YAP and YTHDF3 protein levels in tumors from CRC patients.
Target Regulation Down regulation
Responsed Disease Colorectal cancer ICD-11: 2B91
Pathway Response Hippo signaling pathway hsa04390
Cell Process Ubiquitination degradation
In-vitro Model DLD-1 Colon adenocarcinoma Homo sapiens CVCL_0248
HCT 116 Colon carcinoma Homo sapiens CVCL_0291
HT29 Colon cancer Mus musculus CVCL_A8EZ
LoVo Colon adenocarcinoma Homo sapiens CVCL_0399
LS174T Colon adenocarcinoma Homo sapiens CVCL_1384
RKO Colon carcinoma Homo sapiens CVCL_0504
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
SW620 Colon adenocarcinoma Homo sapiens CVCL_0547
Colorectal cancer [ICD-11: 2B91]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary A new mechanism for m6A-induced decay of Growth arrest specific 5 (GAS5) on YAP signaling in progression of Colorectal cancer which offers a promising approach for CRC treatment. LncRNA GAS5 expressions is negatively correlated with YAP and YTHDF3 protein levels in tumors from CRC patients.
Responsed Disease Colorectal cancer [ICD-11: 2B91]
Target Regulator YTH domain-containing family protein 3 (YTHDF3) READER
Target Regulation Down regulation
Pathway Response Hippo signaling pathway hsa04390
Cell Process Ubiquitination degradation
In-vitro Model DLD-1 Colon adenocarcinoma Homo sapiens CVCL_0248
HCT 116 Colon carcinoma Homo sapiens CVCL_0291
HT29 Colon cancer Mus musculus CVCL_A8EZ
LoVo Colon adenocarcinoma Homo sapiens CVCL_0399
LS174T Colon adenocarcinoma Homo sapiens CVCL_1384
RKO Colon carcinoma Homo sapiens CVCL_0504
SW480 Colon adenocarcinoma Homo sapiens CVCL_0546
SW620 Colon adenocarcinoma Homo sapiens CVCL_0547
Cervical cancer [ICD-11: 2C77]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary The GAS5-AS1 expression in cervical cancer tissues was markedly decreased when compared with that in the adjacent normal tissues. GAS5-AS1 interacted with the tumor suppressor Growth arrest specific 5 (GAS5), and increased its stability by interacting with RNA demethylase ALKBH5 and decreasing GAS5 N6-methyladenosine (m6A) modification. m6A-mediated GAS5 RNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.
Responsed Disease Cervical cancer [ICD-11: 2C77]
Target Regulator RNA demethylase ALKBH5 (ALKBH5) ERASER
Target Regulation Up regulation
Cell Process Cell proliferation and metastasis
In-vitro Model C-33 A Cervical squamous cell carcinoma Homo sapiens CVCL_1094
Ca Ski Cervical squamous cell carcinoma Homo sapiens CVCL_1100
HeLa Endocervical adenocarcinoma Homo sapiens CVCL_0030
SiHa Cervical squamous cell carcinoma Homo sapiens CVCL_0032
Normal cervical epithelium cell line (HCvEpC) (Isolated from cervical tissue)
In-vivo Model 200 uL PBS containing 1×107 cells of stable cells were subcutaneously injected into male BALB/c athymic nude mice (6-week old, 18-20 g).
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary The GAS5-AS1 expression in cervical cancer tissues was markedly decreased when compared with that in the adjacent normal tissues. GAS5-AS1 interacted with the tumor suppressor Growth arrest specific 5 (GAS5), and increased its stability by interacting with RNA demethylase ALKBH5 and decreasing GAS5 N6-methyladenosine (m6A) modification. m6A-mediated GAS5 RNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.
Responsed Disease Cervical cancer [ICD-11: 2C77]
Target Regulator YTH domain-containing family protein 2 (YTHDF2) READER
Target Regulation Up regulation
Cell Process Cell proliferation and metastasis
In-vitro Model C-33 A Cervical squamous cell carcinoma Homo sapiens CVCL_1094
Ca Ski Cervical squamous cell carcinoma Homo sapiens CVCL_1100
HeLa Endocervical adenocarcinoma Homo sapiens CVCL_0030
SiHa Cervical squamous cell carcinoma Homo sapiens CVCL_0032
Normal cervical epithelium cell line (HCvEpC) (Isolated from cervical tissue)
In-vivo Model 200 uL PBS containing 1×107 cells of stable cells were subcutaneously injected into male BALB/c athymic nude mice (6-week old, 18-20 g).
References
Ref 1 Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. Am J Transl Res. 2019 Aug 15;11(8):4909-4921. eCollection 2019.
Ref 2 Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019 Oct 16;18(1):143. doi: 10.1186/s12943-019-1079-y.