General Information of the m6A Target Gene (ID: M6ATAR00443)
Target Name Tyrosine-protein kinase receptor UFO (AXL)
Synonyms
AXL oncogene; UFO
    Click to Show/Hide
Gene Name AXL
Chromosomal Location 19q13.2
Family protein kinase superfamily; Tyr protein kinase family; AXL/UFO subfamily
Function
Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding growth factor GAS6 and which is thus regulating many physiological processes including cell survival, cell proliferation, migration and differentiation. Ligand binding at the cell surface induces dimerization and autophosphorylation of AXL. Following activation by ligand, AXL binds and induces tyrosine phosphorylation of PI3-kinase subunits PIK3R1, PIK3R2 and PIK3R3; but also GRB2, PLCG1, LCK and PTPN11. Other downstream substrate candidates for AXL are CBL, NCK2, SOCS1 and TNS2. Recruitment of GRB2 and phosphatidylinositol 3 kinase regulatory subunits by AXL leads to the downstream activation of the AKT kinase. GAS6/AXL signaling plays a role in various processes such as endothelial cell survival during acidification by preventing apoptosis, optimal cytokine signaling during human natural killer cell development, hepatic regeneration, gonadotropin-releasing hormone neuron survival and migration, platelet activation, or regulation of thrombotic responses. Plays also an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response; (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope; (Microbial infection) Acts as a receptor for Ebolavirus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope; (Microbial infection) Promotes Zika virus entry in glial cells, Sertoli cells and astrocyte. Additionally, Zika virus potentiates AXL kinase activity to antagonize type I interferon signaling and thereby promotes infection. Interferon signaling inhibition occurs via an SOCS1-dependent mechanism
    Click to Show/Hide
Gene ID 558
Uniprot ID
UFO_HUMAN
HGNC ID
HGNC:905
Ensembl Gene ID
ENSG00000167601
KEGG ID
hsa:558
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
AXL can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line Caco-2 cell line Homo sapiens
Treatment: shMETTL3 Caco-2 cells
Control: shNTC Caco-2 cells
GSE167075
Regulation
logFC: -1.33E+00
p-value: 3.11E-06
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3 promoted epithelial-mesenchymal transition (EMT) by upregulating the receptor tyrosine kinase Tyrosine-protein kinase receptor UFO (AXL) and that METTL3 serves as a novel prognostic and/or therapeutic target of interest in ovarian cancer.
Target Regulation Up regulation
Responsed Disease Ovarian cancer ICD-11: 2C73
Cell Process Epithelial-mesenchymal transition
In-vitro Model A2780 Ovarian endometrioid adenocarcinoma Homo sapiens CVCL_0134
COV504 Ovarian carcinoma Homo sapiens CVCL_2424
ES2 Ewing sarcoma Homo sapiens CVCL_AX39
HO-8910 Endocervical adenocarcinoma Homo sapiens CVCL_6868
OVCAR-3 Ovarian serous adenocarcinoma Homo sapiens CVCL_0465
SK-OV-3 Ovarian serous cystadenocarcinoma Homo sapiens CVCL_0532
In-vivo Model 2 × 106 tumor cells (OVCAR3-METTL3 and OVCAR3-Ctrl) or 1 × 106 tumor cells (SKOV3-shMETTL3-1, SKOV3-shMETTL3-2 and SKOV3-shNC) were suspended in 200 uL of RPMI 1640 complete culture medium with 25% Matrigel (BD Biosciences) and inoculated subcutaneously into the right flank of the nude mice.
RNA demethylase ALKBH5 (ALKBH5) [ERASER]
Representative RNA-seq result indicating the expression of this target gene regulated by ALKBH5
Cell Line 143B cell line Homo sapiens
Treatment: siALKBH5 transfected 143B cells
Control: siControl 143B cells
GSE154528
Regulation
logFC: 9.65E-01
p-value: 8.11E-04
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary Expression of m6A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBH5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis. ALKBH5 affects mRNA stability of receptor tyrosine kinase Tyrosine-protein kinase receptor UFO (AXL) in an m6A-dependent way.
Target Regulation Down regulation
Responsed Disease Acute myeloid leukaemia ICD-11: 2A60
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process mRNA stability
In-vitro Model MOLM-13 Adult acute myeloid leukemia Homo sapiens CVCL_2119
MV4-11 Childhood acute monocytic leukemia Homo sapiens CVCL_0064
THP-1 Childhood acute monocytic leukemia Homo sapiens CVCL_0006
In-vivo Model Congenic recipient mice (CD45.2) at 8-10 weeks old were used for AML transplantation, and CD45.1 recipients at 8-10 weeks old were used for normal hematopoietic transplantation assays.
Acute myeloid leukaemia [ICD-11: 2A60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary Expression of m6A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBH5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis. ALKBH5 affects mRNA stability of receptor tyrosine kinase Tyrosine-protein kinase receptor UFO (AXL) in an m6A-dependent way.
Responsed Disease Acute myeloid leukaemia [ICD-11: 2A60]
Target Regulator RNA demethylase ALKBH5 (ALKBH5) ERASER
Target Regulation Down regulation
Pathway Response PI3K-Akt signaling pathway hsa04151
Cell Process mRNA stability
In-vitro Model MOLM-13 Adult acute myeloid leukemia Homo sapiens CVCL_2119
MV4-11 Childhood acute monocytic leukemia Homo sapiens CVCL_0064
THP-1 Childhood acute monocytic leukemia Homo sapiens CVCL_0006
In-vivo Model Congenic recipient mice (CD45.2) at 8-10 weeks old were used for AML transplantation, and CD45.1 recipients at 8-10 weeks old were used for normal hematopoietic transplantation assays.
Ovarian cancer [ICD-11: 2C73]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3 promoted epithelial-mesenchymal transition (EMT) by upregulating the receptor tyrosine kinase Tyrosine-protein kinase receptor UFO (AXL) and that METTL3 serves as a novel prognostic and/or therapeutic target of interest in ovarian cancer.
Responsed Disease Ovarian cancer [ICD-11: 2C73]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Epithelial-mesenchymal transition
In-vitro Model A2780 Ovarian endometrioid adenocarcinoma Homo sapiens CVCL_0134
COV504 Ovarian carcinoma Homo sapiens CVCL_2424
ES2 Ewing sarcoma Homo sapiens CVCL_AX39
HO-8910 Endocervical adenocarcinoma Homo sapiens CVCL_6868
OVCAR-3 Ovarian serous adenocarcinoma Homo sapiens CVCL_0465
SK-OV-3 Ovarian serous cystadenocarcinoma Homo sapiens CVCL_0532
In-vivo Model 2 × 106 tumor cells (OVCAR3-METTL3 and OVCAR3-Ctrl) or 1 × 106 tumor cells (SKOV3-shMETTL3-1, SKOV3-shMETTL3-2 and SKOV3-shNC) were suspended in 200 uL of RPMI 1640 complete culture medium with 25% Matrigel (BD Biosciences) and inoculated subcutaneously into the right flank of the nude mice.
References
Ref 1 METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol. 2018 Nov;151(2):356-365. doi: 10.1016/j.ygyno.2018.09.015. Epub 2018 Sep 21.
Ref 2 Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis. Cell Stem Cell. 2020 Jul 2;27(1):81-97.e8. doi: 10.1016/j.stem.2020.04.001. Epub 2020 May 12.