General Information of the m6A Target Gene (ID: M6ATAR00276)
Target Name High mobility group protein HMGI-C (HMGA2)
Synonyms
High mobility group AT-hook protein 2; HMGIC
    Click to Show/Hide
Gene Name HMGA2
Chromosomal Location 12q14.3
Family HMGA family
Function
Functions as a transcriptional regulator. Functions in cell cycle regulation through CCNA2. Plays an important role in chromosome condensation during the meiotic G2/M transition of spermatocytes. Plays a role in postnatal myogenesis, is involved in satellite cell activation (By similarity). Positively regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner.
    Click to Show/Hide
Gene ID 8091
Uniprot ID
HMGA2_HUMAN
HGNC ID
HGNC:5009
Ensembl Gene ID
ENSG00000149948
KEGG ID
hsa:8091
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
HMGA2 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line LX2 cell line Homo sapiens
Treatment: shMETTL3 LX2 cells
Control: shLuc LX2 cells
GSE207909
Regulation
logFC: 4.44E+00
p-value: 5.85E-138
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between HMGA2 and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 1.68E+00 GSE60213
In total 2 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In hepatocellular carcinoma, METTL3 could direct the formation of circHPS5, and specific m6A controlled the accumulation of circHPS5. YTHDC1 facilitated the cytoplasmic output of circHPS5 under m6A modification. CircHPS5 can act as a miR-370 sponge to regulate the expression of High mobility group protein HMGI-C (HMGA2) and further accelerate hepatocellular carcinoma cell tumorigenesis.
Target Regulation Up regulation
Responsed Disease Hepatocellular carcinoma ICD-11: 2C12.02
Pathway Response Transcriptional misregulation in cancer hsa05202
Cell Process Epithelial-mesenchymal transition
Cell autophagy
In-vitro Model Hep 3B2.1-7 Childhood hepatocellular carcinoma Homo sapiens CVCL_0326
L-02 Endocervical adenocarcinoma Homo sapiens CVCL_6926
In-vivo Model To create the xenograft neoplasm system, 40 male BALB/c nude mice aged 5 weeks were randomly separated into sh-NC, sh-circHPS5, sh-circHPS5+CTRL, and sh-circHPS5+SAH groups (n = 5 for each group). HCC cells were subcutaneously injected into the axilla of the nude mice.
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary Silencing METTL3 down-regulate MALAT1 and High mobility group protein HMGI-C (HMGA2) by sponging miR-26b, and finally inhibit EMT, migration and invasion in BC, providing a theoretical basis for clinical treatment of BC.
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Cell Process Epithelial-mesenchymal transition
In-vitro Model MDA-MB-468 Breast adenocarcinoma Homo sapiens CVCL_0419
MDA-MB-231 Breast adenocarcinoma Homo sapiens CVCL_0062
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Eighteen BALB/C female nude mice aged 4-5 weeks and weighing 15-18 g were randomly assigned into three groups of six mice. The MCF-7 cell lines stably transfected with sh-NC + oe-NC, sh-METTL3 + oe-NC and sh-METTL3 + oe-HMGA2 were selected for subcutaneous establishment of the BC cell line MCF-7 as xenografts in the nude mice. For this purpose, MCF-7 cell lines in the logarithmic growth stage were prepared into a suspension with a concentration of about 1 × 107 cells/ml. The prepared cell suspension was injected into the left armpit of the mice, and the subsequent tumor growth was recorded.
YTH domain-containing protein 1 (YTHDC1) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary In hepatocellular carcinoma, METTL3 could direct the formation of circHPS5, and specific m6A controlled the accumulation of circHPS5. YTHDC1 facilitated the cytoplasmic output of circHPS5 under m6A modification. CircHPS5 can act as a miR-370 sponge to regulate the expression of High mobility group protein HMGI-C (HMGA2) and further accelerate hepatocellular carcinoma cell tumorigenesis.
Target Regulation Up regulation
Responsed Disease Hepatocellular carcinoma ICD-11: 2C12.02
Pathway Response Transcriptional misregulation in cancer hsa05202
Cell Process Epithelial-mesenchymal transition
Cell autophagy
In-vitro Model Hep 3B2.1-7 Childhood hepatocellular carcinoma Homo sapiens CVCL_0326
L-02 Endocervical adenocarcinoma Homo sapiens CVCL_6926
In-vivo Model To create the xenograft neoplasm system, 40 male BALB/c nude mice aged 5 weeks were randomly separated into sh-NC, sh-circHPS5, sh-circHPS5+CTRL, and sh-circHPS5+SAH groups (n = 5 for each group). HCC cells were subcutaneously injected into the axilla of the nude mice.
Liver cancer [ICD-11: 2C12]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary In hepatocellular carcinoma, METTL3 could direct the formation of circHPS5, and specific m6A controlled the accumulation of circHPS5. YTHDC1 facilitated the cytoplasmic output of circHPS5 under m6A modification. CircHPS5 can act as a miR-370 sponge to regulate the expression of High mobility group protein HMGI-C (HMGA2) and further accelerate hepatocellular carcinoma cell tumorigenesis.
Responsed Disease Hepatocellular carcinoma [ICD-11: 2C12.02]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Pathway Response Transcriptional misregulation in cancer hsa05202
Cell Process Epithelial-mesenchymal transition
Cell autophagy
In-vitro Model Hep 3B2.1-7 Childhood hepatocellular carcinoma Homo sapiens CVCL_0326
L-02 Endocervical adenocarcinoma Homo sapiens CVCL_6926
In-vivo Model To create the xenograft neoplasm system, 40 male BALB/c nude mice aged 5 weeks were randomly separated into sh-NC, sh-circHPS5, sh-circHPS5+CTRL, and sh-circHPS5+SAH groups (n = 5 for each group). HCC cells were subcutaneously injected into the axilla of the nude mice.
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary In hepatocellular carcinoma, METTL3 could direct the formation of circHPS5, and specific m6A controlled the accumulation of circHPS5. YTHDC1 facilitated the cytoplasmic output of circHPS5 under m6A modification. CircHPS5 can act as a miR-370 sponge to regulate the expression of High mobility group protein HMGI-C (HMGA2) and further accelerate hepatocellular carcinoma cell tumorigenesis.
Responsed Disease Hepatocellular carcinoma [ICD-11: 2C12.02]
Target Regulator YTH domain-containing protein 1 (YTHDC1) READER
Target Regulation Up regulation
Pathway Response Transcriptional misregulation in cancer hsa05202
Cell Process Epithelial-mesenchymal transition
Cell autophagy
In-vitro Model Hep 3B2.1-7 Childhood hepatocellular carcinoma Homo sapiens CVCL_0326
L-02 Endocervical adenocarcinoma Homo sapiens CVCL_6926
In-vivo Model To create the xenograft neoplasm system, 40 male BALB/c nude mice aged 5 weeks were randomly separated into sh-NC, sh-circHPS5, sh-circHPS5+CTRL, and sh-circHPS5+SAH groups (n = 5 for each group). HCC cells were subcutaneously injected into the axilla of the nude mice.
Breast cancer [ICD-11: 2C60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary Silencing METTL3 down-regulate MALAT1 and High mobility group protein HMGI-C (HMGA2) by sponging miR-26b, and finally inhibit EMT, migration and invasion in BC, providing a theoretical basis for clinical treatment of BC.
Responsed Disease Breast cancer [ICD-11: 2C60]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Epithelial-mesenchymal transition
In-vitro Model MDA-MB-468 Breast adenocarcinoma Homo sapiens CVCL_0419
MDA-MB-231 Breast adenocarcinoma Homo sapiens CVCL_0062
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Eighteen BALB/C female nude mice aged 4-5 weeks and weighing 15-18 g were randomly assigned into three groups of six mice. The MCF-7 cell lines stably transfected with sh-NC + oe-NC, sh-METTL3 + oe-NC and sh-METTL3 + oe-HMGA2 were selected for subcutaneous establishment of the BC cell line MCF-7 as xenografts in the nude mice. For this purpose, MCF-7 cell lines in the logarithmic growth stage were prepared into a suspension with a concentration of about 1 × 107 cells/ml. The prepared cell suspension was injected into the left armpit of the mice, and the subsequent tumor growth was recorded.
References
Ref 1 m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. Mol Ther Nucleic Acids. 2021 Sep 14;26:637-648. doi: 10.1016/j.omtn.2021.09.001. eCollection 2021 Dec 3.
Ref 2 The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 2021 Aug 21;21(1):441. doi: 10.1186/s12935-021-02113-5.