General Information of the m6A Target Gene (ID: M6ATAR00238)
Target Name E3 SUMO-protein ligase EGR2 (EGR2)
Synonyms
AT591; E3 SUMO-protein transferase ERG2; Early growth response protein 2; EGR-2; Zinc finger protein Krox-20; KROX20
    Click to Show/Hide
Gene Name EGR2
Chromosomal Location 10q21.3
Family EGR C2H2-type zinc-finger protein family
Function
Sequence-specific DNA-binding transcription factor. Plays a role in hindbrain segmentation by regulating the expression of a subset of homeobox containing genes and in Schwann cell myelination by regulating the expression of genes involved in the formation and maintenance of myelin (By similarity). Binds to two EGR2-consensus sites EGR2A (5'-CTGTAGGAG-3') and EGR2B (5'-ATGTAGGTG-3') in the HOXB3 enhancer and promotes HOXB3 transcriptional activation (By similarity). Binds to specific DNA sites located in the promoter region of HOXA4, HOXB2 and ERBB2 (By similarity). Regulates hindbrain segmentation by controlling the expression of Hox genes, such as HOXA4, HOXB3 and HOXB2, and thereby specifying odd and even rhombomeres (By similarity). Promotes the expression of HOXB3 in the rhombomere r5 in the hindbrain (By similarity). Regulates myelination in the peripheral nervous system after birth, possibly by regulating the expression of myelin proteins, such as MPZ, and by promoting the differentiation of Schwann cells (By similarity). Involved in the development of the jaw openener musculature, probably by playing a role in its innervation through trigeminal motor neurons (By similarity). May play a role in adipogenesis, possibly by regulating the expression of CEBPB (By similarity). E3 SUMO-protein ligase helping SUMO1 conjugation to its coregulators NAB1 and NAB2, whose sumoylation down-regulates EGR2 transcriptional activity.
    Click to Show/Hide
Gene ID 1959
Uniprot ID
EGR2_HUMAN
HGNC ID
HGNC:3239
Ensembl Gene ID
ENSG00000122877
KEGG ID
hsa:1959
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
EGR2 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including E2F3, WTAP, CCND1, CDK4, E3 SUMO-protein ligase EGR2 (EGR2), YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer ICD-11: 2C25
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Protein virilizer homolog (VIRMA) [WRITER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including E2F3, WTAP, CCND1, CDK4, E3 SUMO-protein ligase EGR2 (EGR2), YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer ICD-11: 2C25
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Lung cancer [ICD-11: 2C25]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including E2F3, WTAP, CCND1, CDK4, E3 SUMO-protein ligase EGR2 (EGR2), YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer [ICD-11: 2C25]
Target Regulator Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) READER
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including E2F3, WTAP, CCND1, CDK4, E3 SUMO-protein ligase EGR2 (EGR2), YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer [ICD-11: 2C25]
Target Regulator Protein virilizer homolog (VIRMA) WRITER
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
References
Ref 1 Identification of pathology-specific regulators of m(6)A RNA modification to optimize lung cancer management in the context of predictive, preventive, and personalized medicine. EPMA J. 2020 Jul 29;11(3):485-504. doi: 10.1007/s13167-020-00220-3. eCollection 2020 Sep.