General Information of the m6A Target Gene (ID: M6ATAR00235)
Target Name Transcription factor E2F3 (E2F3)
Synonyms
E2F-3; KIAA0075
    Click to Show/Hide
Gene Name E2F3
Chromosomal Location 6p22.3
Family E2F/DP family
Function
Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity).
    Click to Show/Hide
Gene ID 1871
Uniprot ID
E2F3_HUMAN
HGNC ID
HGNC:3115
Ensembl Gene ID
ENSG00000112242
KEGG ID
hsa:1871
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
E2F3 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) [READER]
Representative RNA-seq result indicating the expression of this target gene regulated by IGF2BP1
Cell Line HepG2 cell line Homo sapiens
Treatment: siIGF2BP1 HepG2 cells
Control: siControl HepG2 cells
GSE161086
Regulation
logFC: -8.52E-01
p-value: 2.50E-03
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including Transcription factor E2F3 (E2F3), WTAP, CCND1, CDK4, EGR2, YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer ICD-11: 2C25
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Protein virilizer homolog (VIRMA) [WRITER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including Transcription factor E2F3 (E2F3), WTAP, CCND1, CDK4, EGR2, YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer ICD-11: 2C25
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Gastric cancer [ICD-11: 2B72]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response []
Response Summary Reveal the compelling role of m6A in GC and highlight the regulatory function of the miR-660/Transcription factor E2F3 (E2F3) pathway in Gastric cancer progression.
Responsed Disease Gastric cancer [ICD-11: 2B72]
Pathway Response MicroRNAs in cancer hsa05206
Cell Process Cell proliferation
In-vitro Model ()
()
()
()
()
()
Pancreatic cancer [ICD-11: 2C10]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response []
Response Summary LINC00857/miR-150-5p/E2F3 regulatory axis is taken as an alternative therapeutic target for treating pancreatic Cancer.
Responsed Disease Pancreatic cancer [ICD-11: 2C10]
Target Regulation Up regulation
Cell Process Cell apoptosis
In-vitro Model ()
()
()
()
()
()
Lung cancer [ICD-11: 2C25]
In total 2 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including Transcription factor E2F3 (E2F3), WTAP, CCND1, CDK4, EGR2, YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer [ICD-11: 2C25]
Target Regulator Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) READER
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
Experiment 2 Reporting the m6A-centered Disease Response [1]
Response Summary GSEA revealed that KIAA1429, METTL3, and IGF2BP1 were significantly related to multiple biological behaviors, including proliferation, apoptosis, metastasis, energy metabolism, drug resistance, and recurrence, and that KIAA1429 and IGF2BP1 had potential target genes, including Transcription factor E2F3 (E2F3), WTAP, CCND1, CDK4, EGR2, YBX1, and TLX, which were associated with lung cancers.
Responsed Disease Lung cancer [ICD-11: 2C25]
Target Regulator Protein virilizer homolog (VIRMA) WRITER
Cell Process Cell apoptosis
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
NCI-H520 Lung squamous cell carcinoma Homo sapiens CVCL_1566
HBE (Human bronchial epithelial cell line)
LTEP-a2 Endocervical adenocarcinoma Homo sapiens CVCL_6929
SK-MES-1 Lung squamous cell carcinoma Homo sapiens CVCL_0630
References
Ref 1 Identification of pathology-specific regulators of m(6)A RNA modification to optimize lung cancer management in the context of predictive, preventive, and personalized medicine. EPMA J. 2020 Jul 29;11(3):485-504. doi: 10.1007/s13167-020-00220-3. eCollection 2020 Sep.