General Information of the m6A Target Gene (ID: M6ATAR00174)
Target Name Aldo-keto reductase family 1 member C1 (AKR1C1)
Synonyms
20-alpha-hydroxysteroid dehydrogenase; 20-alpha-HSD; Chlordecone reductase homolog HAKRC; Dihydrodiol dehydrogenase 1; DD1; High-affinity hepatic bile acid-binding protein; HBAB; DDH; DDH1
    Click to Show/Hide
Gene Name AKR1C1
Chromosomal Location 10p15.1
Family aldo/keto reductase family
Function
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH. Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens. May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate. Displays affinity for bile acids.
    Click to Show/Hide
Gene ID 1645
Uniprot ID
AK1C1_HUMAN
HGNC ID
HGNC:384
Ensembl Gene ID
ENSG00000187134
KEGG ID
hsa:1645
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
AKR1C1 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
YTH domain-containing family protein 1 (YTHDF1) [READER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary YTHDF1 deficiency inhibits Non-small cell lung cancer cell proliferation and xenograft tumor formation through regulating the translational efficiency of CDK2, CDK4, p27, and cyclin D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression. Mechanistic studies identified the Keap1-Nrf2-Aldo-keto reductase family 1 member C1 (AKR1C1) axis as the downstream mediator of YTHDF1. YTHDF1 high expression correlates with better clinical outcome, with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment.
Target Regulation Down regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Cisplatin Approved
Pathway Response Chemical carcinogenesis - reactive oxygen species hsa05208
Cell cycle hsa04110
Cell Process Biological regulation
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
A549-DDP (Human lung adenocarcinoma is resistant to cisplatin)
GLC-82 Endocervical adenocarcinoma Homo sapiens CVCL_3371
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H1975 Lung adenocarcinoma Homo sapiens CVCL_1511
HEK293T Normal Homo sapiens CVCL_0063
NCI-H1650 Minimally invasive lung adenocarcinoma Homo sapiens CVCL_1483
NCI-H838 Lung adenocarcinoma Homo sapiens CVCL_1594
SPC-A1 Endocervical adenocarcinoma Homo sapiens CVCL_6955
In-vivo Model Mice were treated via nasal inhalation of adenovirus carrying Cre recombinase (5 × 106 p.f.u for Ad-Cre, Biowit Inc., Shenzhen, Guangdong), and were then killed at indicated times for gross inspection and histopathological examination.
Lung cancer [ICD-11: 2C25]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary YTHDF1 deficiency inhibits Non-small cell lung cancer cell proliferation and xenograft tumor formation through regulating the translational efficiency of CDK2, CDK4, p27, and cyclin D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression. Mechanistic studies identified the Keap1-Nrf2-Aldo-keto reductase family 1 member C1 (AKR1C1) axis as the downstream mediator of YTHDF1. YTHDF1 high expression correlates with better clinical outcome, with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator YTH domain-containing family protein 1 (YTHDF1) READER
Target Regulation Down regulation
Responsed Drug Cisplatin Approved
Pathway Response Chemical carcinogenesis - reactive oxygen species hsa05208
Cell cycle hsa04110
Cell Process Biological regulation
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
A549-DDP (Human lung adenocarcinoma is resistant to cisplatin)
GLC-82 Endocervical adenocarcinoma Homo sapiens CVCL_3371
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H1975 Lung adenocarcinoma Homo sapiens CVCL_1511
HEK293T Normal Homo sapiens CVCL_0063
NCI-H1650 Minimally invasive lung adenocarcinoma Homo sapiens CVCL_1483
NCI-H838 Lung adenocarcinoma Homo sapiens CVCL_1594
SPC-A1 Endocervical adenocarcinoma Homo sapiens CVCL_6955
In-vivo Model Mice were treated via nasal inhalation of adenovirus carrying Cre recombinase (5 × 106 p.f.u for Ad-Cre, Biowit Inc., Shenzhen, Guangdong), and were then killed at indicated times for gross inspection and histopathological examination.
Cisplatin [Approved]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary YTHDF1 deficiency inhibits Non-small cell lung cancer cell proliferation and xenograft tumor formation through regulating the translational efficiency of CDK2, CDK4, p27, and cyclin D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression. Mechanistic studies identified the Keap1-Nrf2-Aldo-keto reductase family 1 member C1 (AKR1C1) axis as the downstream mediator of YTHDF1. YTHDF1 high expression correlates with better clinical outcome, with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment.
Target Regulator YTH domain-containing family protein 1 (YTHDF1) READER
Target Regulation Down regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Chemical carcinogenesis - reactive oxygen species hsa05208
Cell cycle hsa04110
Cell Process Biological regulation
In-vitro Model A-549 Lung adenocarcinoma Homo sapiens CVCL_0023
A549-DDP (Human lung adenocarcinoma is resistant to cisplatin)
GLC-82 Endocervical adenocarcinoma Homo sapiens CVCL_3371
NCI-H1299 Lung large cell carcinoma Homo sapiens CVCL_0060
NCI-H1975 Lung adenocarcinoma Homo sapiens CVCL_1511
HEK293T Normal Homo sapiens CVCL_0063
NCI-H1650 Minimally invasive lung adenocarcinoma Homo sapiens CVCL_1483
NCI-H838 Lung adenocarcinoma Homo sapiens CVCL_1594
SPC-A1 Endocervical adenocarcinoma Homo sapiens CVCL_6955
In-vivo Model Mice were treated via nasal inhalation of adenovirus carrying Cre recombinase (5 × 106 p.f.u for Ad-Cre, Biowit Inc., Shenzhen, Guangdong), and were then killed at indicated times for gross inspection and histopathological examination.
References
Ref 1 YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019 Oct 25;10(1):4892. doi: 10.1038/s41467-019-12801-6.