General Information of the m6A Target Gene (ID: M6ATAR00217)
Target Name Cytochrome P450 1B1 (CYP1B1)
Synonyms
CYPIB1; Hydroperoxy icosatetraenoate dehydratase
    Click to Show/Hide
Gene Name CYP1B1
Chromosomal Location 2p22.2
Family cytochrome P450 family
Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Exhibits catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2- and 4-hydroxy E1 and E2. Displays a predominant hydroxylase activity toward E2 at the C-4 position. Metabolizes testosterone and progesterone to B or D ring hydroxylated metabolites. May act as a major enzyme for all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid. Catalyzes the epoxidation of double bonds of certain PUFA. Converts arachidonic acid toward epoxyeicosatrienoic acid (EpETrE) regioisomers, 8,9-, 11,12-, and 14,15- EpETrE, that function as lipid mediators in the vascular system. Additionally, displays dehydratase activity toward oxygenated eicosanoids hydroperoxyeicosatetraenoates (HpETEs). This activity is independent of cytochrome P450 reductase, NADPH, and O2. Also involved in the oxidative metabolism of xenobiotics, particularly converting polycyclic aromatic hydrocarbons and heterocyclic aryl amines procarcinogens to DNA-damaging products. Plays an important role in retinal vascular development. Under hyperoxic O2 conditions, promotes retinal angiogenesis and capillary morphogenesis, likely by metabolizing the oxygenated products generated during the oxidative stress. Also, contributes to oxidative homeostasis and ultrastructural organization and function of trabecular meshwork tissue through modulation of POSTN expression (By similarity).
    Click to Show/Hide
Gene ID 1545
Uniprot ID
CP1B1_HUMAN
HGNC ID
HGNC:2597
Ensembl Gene ID
ENSG00000138061
KEGG ID
hsa:1545
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
CYP1B1 can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line Caco-2 cell line Homo sapiens
Treatment: shMETTL3 Caco-2 cells
Control: shNTC Caco-2 cells
GSE167075
Regulation
logFC: 1.33E+00
p-value: 1.93E-05
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between CYP1B1 and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 1.72E+00 GSE60213
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. When METTL3 was inhibited, m6A levels were accordingly decreased and cell apoptosis was suppressed in the H/R in vitro model. Based on MeRIP sequencing, transcription factor activating enhancer binding protein 2-alpha (tfap2a), Cytochrome P450 1B1 (CYP1B1), and forkhead box D1 (foxd1) were significantly differentially expressed, as was m6A, which is involved in the negative regulation of cell proliferation and kidney development.
Target Regulation Up regulation
Responsed Disease Injury of kidney ICD-11: NB92.0
Cell Process Cell proliferation
Cell apoptosis
In-vitro Model NRK-52E Normal Rattus norvegicus CVCL_0468
In-vivo Model Rats were anesthetized and incised through the midline of the abdomen, and the left renal vertebral arch and arteries were blocked for 45 min, thereby resulting in left kidney ischemia. At the same time, the right kidney was removed, further aggravating the degree of left kidney injury.
Methyltransferase-like 14 (METTL14) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL14
Cell Line MDA-MB-231 Homo sapiens
Treatment: siMETTL14 MDA-MB-231 cells
Control: MDA-MB-231 cells
GSE81164
Regulation
logFC: -1.14E+00
p-value: 9.74E-11
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary LNC942-METTL14-CXCR4/Cytochrome P450 1B1 (CYP1B1) signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for breast cancer prevention and treatment.
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Cell Process Cell apoptosis
Breast cancer [ICD-11: 2C60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary LNC942-METTL14-CXCR4/Cytochrome P450 1B1 (CYP1B1) signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for breast cancer prevention and treatment.
Responsed Disease Breast cancer [ICD-11: 2C60]
Target Regulator Methyltransferase-like 14 (METTL14) WRITER
Target Regulation Up regulation
Cell Process Cell apoptosis
Urinary/pelvic organs injury [ICD-11: NB92]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. When METTL3 was inhibited, m6A levels were accordingly decreased and cell apoptosis was suppressed in the H/R in vitro model. Based on MeRIP sequencing, transcription factor activating enhancer binding protein 2-alpha (tfap2a), Cytochrome P450 1B1 (CYP1B1), and forkhead box D1 (foxd1) were significantly differentially expressed, as was m6A, which is involved in the negative regulation of cell proliferation and kidney development.
Responsed Disease Injury of kidney [ICD-11: NB92.0]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Cell proliferation
Cell apoptosis
In-vitro Model NRK-52E Normal Rattus norvegicus CVCL_0468
In-vivo Model Rats were anesthetized and incised through the midline of the abdomen, and the left renal vertebral arch and arteries were blocked for 45 min, thereby resulting in left kidney ischemia. At the same time, the right kidney was removed, further aggravating the degree of left kidney injury.
References
Ref 1 METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. Am J Physiol Renal Physiol. 2020 Nov 1;319(5):F839-F847. doi: 10.1152/ajprenal.00222.2020. Epub 2020 Sep 21.
Ref 2 LNC942 promoting METTL14-mediated m(6)A methylation in breast cancer cell proliferation and progression. Oncogene. 2020 Jul;39(31):5358-5372. doi: 10.1038/s41388-020-1338-9. Epub 2020 Jun 23.