General Information of the Drug (ID: M6APDG03327)
Name
AG1478
Synonyms
AG-1478; 153436-53-4; Tyrphostin AG 1478; N-(3-chlorophenyl)-6,7-dimethoxyquinazolin-4-amine; 175178-82-2; Tyrphostin AG-1478; 4-(3-Chloroanilino)-6,7-dimethoxyquinazoline; AG 1478; AG1478; TYRPHOSTIN; 4-Quinazolinamine, N-(3-chlorophenyl)-6,7-dimethoxy-; UNII-SUH0SEZ9HY; SUH0SEZ9HY; AG-1478 hydrochloride; AG-1478 (Tyrphostin AG-1478); CHEMBL7917; CHEBI:75404; N-(3-Chlorophenyl)-6,7-dimethoxy-4-quinazolinamine; NSC-693255; AK-63142; N-(3-chlorophenyl)-6,7-dimethoxy-quinazolin-4-amine; BRD6408; BRD-6408; SR-01000076156; NSC693255
    Click to Show/Hide
Status
Preclinical
Structure
Formula
C16H14ClN3O2
InChI
1S/C16H14ClN3O2/c1-21-14-7-12-13(8-15(14)22-2)18-9-19-16(12)20-11-5-3-4-10(17)6-11/h3-9H,1-2H3,(H,18,19,20)
InChIKey
GFNNBHLJANVSQV-UHFFFAOYSA-N
PubChem CID
2051
TTD Drug ID
D0ZH1U
VARIDT Drug ID
DR01471
Target Gene(s) and Their Upstream m6A Regulator, Together with the Effect of Target Gene(s) in Drug Response
The target genes involved in drug-target interaction (such as drug-metabolizing enzymes, drug transporters and therapeutic targets) and drug-mediated cell death signaling (including modulating DNA damage and repair capacity, escaping from drug-induced apoptosis, autophagy, cellular metabolic reprogramming, oncogenic bypass signaling, cell microenvironment, cell stemness, etc.) could be regulated by m6A regulator(s) and affected their corresponding drug response. You can browse detailed information on drug-related target gene(s) mediated by m6A regulators.
Breast cancer resistance protein (ABCG2)
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary Breast cancer resistance protein (ABCG2) is a therapeutic target for AG1478. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of AG1478 through regulating the expression of Breast cancer resistance protein (ABCG2). [1], [2]
Epidermal growth factor receptor (EGFR)
Methyltransferase-like 14 (METTL14)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The Methyltransferase-like 14 (METTL14) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [3], [4]
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [4], [5]
RNA demethylase ALKBH5 (ALKBH5)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The RNA demethylase ALKBH5 (ALKBH5) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [4], [6]
YTH domain-containing family protein 1 (YTHDF1)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The YTH domain-containing family protein 1 (YTHDF1) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [4], [7]
YTH domain-containing family protein 2 (YTHDF2)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The YTH domain-containing family protein 2 (YTHDF2) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [4], [8]
YTH domain-containing family protein 3 (YTHDF3)
In total 1 mechanisms lead to this potential drug response
Response Summary Epidermal growth factor receptor (EGFR) is a therapeutic target for AG1478. The YTH domain-containing family protein 3 (YTHDF3) has potential in affecting the response of AG1478 through regulating the expression of Epidermal growth factor receptor (EGFR). [4], [9]
P-glycoprotein 1 (ABCB1)
Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3)
In total 1 mechanisms lead to this potential drug response
Response Summary P-glycoprotein 1 (ABCB1) is a therapeutic target for AG1478. The Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has potential in affecting the response of AG1478 through regulating the expression of P-glycoprotein 1 (ABCB1). [2], [10]
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary P-glycoprotein 1 (ABCB1) is a therapeutic target for AG1478. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of AG1478 through regulating the expression of P-glycoprotein 1 (ABCB1). [1], [2]
Stress-activated protein kinase 2a (p38 alpha)
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)
In total 1 mechanisms lead to this potential drug response
Response Summary Stress-activated protein kinase 2a (p38 alpha) is a therapeutic target for AG1478. The Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) has potential in affecting the response of AG1478 through regulating the expression of Stress-activated protein kinase 2a (p38 alpha). [11], [12]
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary Stress-activated protein kinase 2a (p38 alpha) is a therapeutic target for AG1478. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of AG1478 through regulating the expression of Stress-activated protein kinase 2a (p38 alpha). [12], [13]
YTH domain-containing family protein 3 (YTHDF3)
In total 1 mechanisms lead to this potential drug response
Response Summary Stress-activated protein kinase 2a (p38 alpha) is a therapeutic target for AG1478. The YTH domain-containing family protein 3 (YTHDF3) has potential in affecting the response of AG1478 through regulating the expression of Stress-activated protein kinase 2a (p38 alpha). [11], [12]
References
Ref 1 METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021 Jan;53(1):91-102. doi: 10.1038/s12276-020-00510-w. Epub 2021 Jan 8.
Ref 2 Inhibiting the function of ABCB1 and ABCG2 by the EGFR tyrosine kinase inhibitor AG1478. Biochem Pharmacol. 2009 Mar 1;77(5):781-93.
Ref 3 METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner. Cancer Manag Res. 2020 Dec 23;12:13173-13184. doi: 10.2147/CMAR.S286275. eCollection 2020.
Ref 4 Synthesis of a prodrug designed to release multiple inhibitors of the epidermal growth factor receptor tyrosine kinase and an alkylating agent: a novel tumor targeting concept. J Med Chem. 2003 Dec 4;46(25):5546-51. doi: 10.1021/jm030423m.
Ref 5 METTL3 induces PLX4032 resistance in melanoma by promoting m(6)A-dependent EGFR translation. Cancer Lett. 2021 Dec 1;522:44-56. doi: 10.1016/j.canlet.2021.09.015. Epub 2021 Sep 13.
Ref 6 ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res. 2019 Apr 15;38(1):163. doi: 10.1186/s13046-019-1159-2.
Ref 7 Insufficient Radiofrequency Ablation Promotes Hepatocellular Carcinoma Metastasis Through N6-Methyladenosine mRNA Methylation-Dependent Mechanism. Hepatology. 2021 Sep;74(3):1339-1356. doi: 10.1002/hep.31766.
Ref 8 YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019 Feb 1;442:252-261. doi: 10.1016/j.canlet.2018.11.006. Epub 2018 Nov 10.
Ref 9 YTHDF3 Induces the Translation of m(6)A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell. 2020 Dec 14;38(6):857-871.e7. doi: 10.1016/j.ccell.2020.10.004. Epub 2020 Oct 29.
Ref 10 Binding of RNA m6A by IGF2BP3 triggers chemoresistance of HCT8 cells via upregulation of ABCB1. Am J Cancer Res. 2021 Apr 15;11(4):1428-1445. eCollection 2021.
Ref 11 N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 3 or insulin like growth factor 2 mRNA binding protein 2 knockdown protects human bronchial epithelial cells from hypoxia/reoxygenation injury by inactivating p38 MAPK, AKT, ERK1/2, and NF-KappaB pathways. Bioengineered. 2022 May;13(5):11973-11986. doi: 10.1080/21655979.2021.1999550.
Ref 12 The neuroprotective action of JNK3 inhibitors based on the 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole scaffold. Bioorg Med Chem Lett. 2005 Nov 1;15(21):4666-70. doi: 10.1016/j.bmcl.2005.07.076.
Ref 13 m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther. 2019 Jun 4;12:4391-4402. doi: 10.2147/OTT.S201052. eCollection 2019.