General Information of the Drug (ID: M6APDG02857)
Name
Temsirolimus
Synonyms
Torisel
    Click to Show/Hide
Status
Approved
Structure
3D MOL
Formula
C56H87NO16
InChI
1S/C56H87NO16/c1-33-17-13-12-14-18-34(2)45(68-9)29-41-22-20-39(7)56(67,73-41)51(63)52(64)57-24-16-15-19-42(57)53(65)71-46(30-43(60)35(3)26-38(6)49(62)50(70-11)48(61)37(5)25-33)36(4)27-40-21-23-44(47(28-40)69-10)72-54(66)55(8,31-58)32-59/h12-14,17-18,26,33,35-37,39-42,44-47,49-50,58-59,62,67H,15-16,19-25,27-32H2,1-11H3/b14-12+,17-13+,34-18+,38-26+/t33-,35-,36-,37-,39-,40+,41+,42+,44-,45+,46+,47-,49-,50+,56-/m1/s1
InChIKey
CBPNZQVSJQDFBE-FUXHJELOSA-N
PubChem CID
6918289
TTD Drug ID
D0ES1Q
VARIDT Drug ID
DR00432
Target Gene(s) and Their Upstream m6A Regulator, Together with the Effect of Target Gene(s) in Drug Response
The target genes involved in drug-target interaction (such as drug-metabolizing enzymes, drug transporters and therapeutic targets) and drug-mediated cell death signaling (including modulating DNA damage and repair capacity, escaping from drug-induced apoptosis, autophagy, cellular metabolic reprogramming, oncogenic bypass signaling, cell microenvironment, cell stemness, etc.) could be regulated by m6A regulator(s) and affected their corresponding drug response. You can browse detailed information on drug-related target gene(s) mediated by m6A regulators.
P-glycoprotein 1 (ABCB1)
Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3)
In total 1 mechanisms lead to this potential drug response
Response Summary P-glycoprotein 1 (ABCB1) is a therapeutic target for Temsirolimus. The Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has potential in affecting the response of Temsirolimus through regulating the expression of P-glycoprotein 1 (ABCB1). [1], [2]
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary P-glycoprotein 1 (ABCB1) is a therapeutic target for Temsirolimus. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of Temsirolimus through regulating the expression of P-glycoprotein 1 (ABCB1). [2], [3]
Serine/threonine-protein kinase mTOR (mTOR)
Fat mass and obesity-associated protein (FTO)
In total 1 mechanisms lead to this potential drug response
Response Summary Serine/threonine-protein kinase mTOR (mTOR) is a therapeutic target for Temsirolimus. The Fat mass and obesity-associated protein (FTO) has potential in affecting the response of Temsirolimus through regulating the expression of Serine/threonine-protein kinase mTOR (mTOR). [4], [5]
Methyltransferase-like 14 (METTL14)
In total 1 mechanisms lead to this potential drug response
Response Summary Serine/threonine-protein kinase mTOR (mTOR) is a therapeutic target for Temsirolimus. The Methyltransferase-like 14 (METTL14) has potential in affecting the response of Temsirolimus through regulating the expression of Serine/threonine-protein kinase mTOR (mTOR). [5], [6]
Methyltransferase-like 3 (METTL3)
In total 1 mechanisms lead to this potential drug response
Response Summary Serine/threonine-protein kinase mTOR (mTOR) is a therapeutic target for Temsirolimus. The Methyltransferase-like 3 (METTL3) has potential in affecting the response of Temsirolimus through regulating the expression of Serine/threonine-protein kinase mTOR (mTOR). [5], [7]
YTH domain-containing family protein 1 (YTHDF1)
In total 1 mechanisms lead to this potential drug response
Response Summary Serine/threonine-protein kinase mTOR (mTOR) is a therapeutic target for Temsirolimus. The YTH domain-containing family protein 1 (YTHDF1) has potential in affecting the response of Temsirolimus through regulating the expression of Serine/threonine-protein kinase mTOR (mTOR). [5], [8]
YTH domain-containing family protein 2 (YTHDF2)
In total 1 mechanisms lead to this potential drug response
Response Summary Serine/threonine-protein kinase mTOR (mTOR) is a therapeutic target for Temsirolimus. The YTH domain-containing family protein 2 (YTHDF2) has potential in affecting the response of Temsirolimus through regulating the expression of Serine/threonine-protein kinase mTOR (mTOR). [4], [5]
References
Ref 1 Binding of RNA m6A by IGF2BP3 triggers chemoresistance of HCT8 cells via upregulation of ABCB1. Am J Cancer Res. 2021 Apr 15;11(4):1428-1445. eCollection 2021.
Ref 2 Association of NR1I2, CYP3A5 and ABCB1 genetic polymorphisms with variability of temsirolimus pharmacokinetics and toxicity in patients with metastatic bladder cancer. Cancer Chemother Pharmacol. 2017 Sep;80(3):653-659. doi: 10.1007/s00280-017-3379-5. Epub 2017 Jul 4.
Ref 3 METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021 Jan;53(1):91-102. doi: 10.1038/s12276-020-00510-w. Epub 2021 Jan 8.
Ref 4 Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics. 2021 Jul 25;11(17):8464-8479. doi: 10.7150/thno.60028. eCollection 2021.
Ref 5 [Mammalian target of rapamycin, its mode of action and clinical response in metastatic clear cell carcinoma]. Gan To Kagaku Ryoho. 2009 Jul;36(7):1076-9.
Ref 6 The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal. 2021 Mar;35(3):e23655. doi: 10.1002/jcla.23655. Epub 2020 Dec 12.
Ref 7 Methyltransferase-like 3 promotes the progression of lung cancer via activating PI3K/AKT/mTOR pathway. Clin Exp Pharmacol Physiol. 2022 Jul;49(7):748-758. doi: 10.1111/1440-1681.13647. Epub 2022 May 23.
Ref 8 YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Exp Hematol Oncol. 2021 Jun 4;10(1):35. doi: 10.1186/s40164-021-00227-0.