General Information of the m6A Target Gene (ID: M6ATAR00644)
Target Name Angiopoietin-1 receptor (TEK)
Synonyms
Endothelial tyrosine kinase; Tunica interna endothelial cell kinase; Tyrosine kinase with Ig and EGF homology domains-2; Tyrosine-protein kinase receptor TEK; Tyrosine-protein kinase receptor TIE-2; hTIE2; p140 TEK; CD202b
    Click to Show/Hide
Gene Name TEK
Chromosomal Location 9p21.2
Family Protein kinase superfamily, Tyr protein kinase family, Tie subfamily
Function
Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of pro-inflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.
    Click to Show/Hide
Gene ID 7010
Uniprot ID
TIE2_HUMAN
HGNC ID
HGNC:11724
Ensembl Gene ID
ENSG00000120156
KEGG ID
hsa:7010
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
TEK can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line mouse embryonic stem cells Mus musculus
Treatment: METTL3-/- ESCs
Control: Wild type ESCs
GSE145309
Regulation
logFC: 3.39E+00
p-value: 6.45E-138
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between TEK and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 3.75E+00 GSE60213
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary Deletion of Mettl3 leads to the suppression of Angiopoietin-1 receptor (TEK) and VEGF-A,ablation of Mettl3 in bladder urothelial attenuates the oncogenesis and tumor angiogenesis of bladder cancer.
Target Regulation Up regulation
Responsed Disease Bladder cancer ICD-11: 2C94
Cell Process Cellular proliferation and survival
In-vitro Model UM-UC-3 Bladder carcinoma Homo sapiens CVCL_1783
T24 Bladder carcinoma Homo sapiens CVCL_0554
In-vivo Model For induction of BCa, 6-8-week-old mice were treated with drinking water containing 500 ug/ml BBN for 16 weeks and then given normal water for another 10 weeks. Tamoxifen was intraperitonelly injected to the mice with 0.08 mg/g of body weight each day for 3 days in order to inductively knock out the target gene.
Bladder cancer [ICD-11: 2C94]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary Deletion of Mettl3 leads to the suppression of Angiopoietin-1 receptor (TEK) and VEGF-A,ablation of Mettl3 in bladder urothelial attenuates the oncogenesis and tumor angiogenesis of bladder cancer.
Responsed Disease Bladder cancer [ICD-11: 2C94]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Cellular proliferation and survival
In-vitro Model UM-UC-3 Bladder carcinoma Homo sapiens CVCL_1783
T24 Bladder carcinoma Homo sapiens CVCL_0554
In-vivo Model For induction of BCa, 6-8-week-old mice were treated with drinking water containing 500 ug/ml BBN for 16 weeks and then given normal water for another 10 weeks. Tamoxifen was intraperitonelly injected to the mice with 0.08 mg/g of body weight each day for 3 days in order to inductively knock out the target gene.
References
Ref 1 Deficiency of Mettl3 in Bladder Cancer Stem Cells Inhibits Bladder Cancer Progression and Angiogenesis. Front Cell Dev Biol. 2021 Feb 18;9:627706. doi: 10.3389/fcell.2021.627706. eCollection 2021.