General Information of the m6A Target Gene (ID: M6ATAR00474)
Target Name Protein AATF (AATF/CHE1)
Synonyms
Apoptosis-antagonizing transcription factor; Rb-binding protein Che-1; CHE1; DED; HSPC277
    Click to Show/Hide
Gene Name AATF
Family AATF family. {ECO:0000305}.
Function
May function as a general inhibitor of the histone deacetylase HDAC1. Binding to the pocket region of RB1 may displace HDAC1 from RB1/E2F complexes, leading to activation of E2F target genes and cell cycle progression. Conversely, displacement of HDAC1 from SP1 bound to the CDKN1A promoter leads to increased expression of this CDK inhibitor and blocks cell cycle progression. Also antagonizes PAWR mediated induction of aberrant amyloid peptide production in Alzheimer disease (presenile and senile dementia), although the molecular basis for this phenomenon has not been described to date. {ECO:0000269|PubMed:12450794, ECO:0000269|PubMed:12847090, ECO:0000269|PubMed:14627703, ECO:0000269|PubMed:15207272}.
    Click to Show/Hide
Uniprot ID
AATF_HUMAN
HGNC ID
HGNC:19235
Ensembl Gene ID
ENSG00000275700; ENSG00000276072
KEGG ID
hsa:26574
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
AATF can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line Liver Mus musculus
Treatment: Mettl3 knockout liver
Control: Wild type liver cells
GSE198513
Regulation
logFC: -6.23E-01
p-value: 2.02E-10
More Results Click to View More RNA-seq Results
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Protein AATF (AATF/CHE1) axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Responsed Drug Doxil Approved
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
Breast cancer [ICD-11: 2C60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Protein AATF (AATF/CHE1) axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Responsed Disease Breast cancer [ICD-11: 2C60]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Doxil Approved
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
Doxil [Approved]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Protein AATF (AATF/CHE1) axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
References
Ref 1 METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021 Jan;53(1):91-102. doi: 10.1038/s12276-020-00510-w. Epub 2021 Jan 8.