Mechanism of Crosstalk between m6A Modification and Epigenetic Regulation
Crosstalk ID
M6ACROT03512
[1], [2]
Histone modification H3K27ac P300 METTL3 Direct Enhancement m6A modification Circ_RNF13 Circ_RNF13 METTL3 Methylation : m6A sites
m6A Modification:
m6A Regulator Methyltransferase-like 3 (METTL3) WRITER
m6A Target Circ_RNF13
Epigenetic Regulation that have Cross-talk with This m6A Modification:
Epigenetic Regulation Type Histone modification (HistMod)
Epigenetic Regulator Histone acetyltransferase p300 (P300) WRITER View Details
Regulated Target Histone H3 lysine 27 acetylation (H3K27ac) View Details
Downstream Gene METTL3 View Details
Crosstalk Relationship Histone modification  →  m6A Enhancement
Crosstalk Mechanism histone modification directly impacts m6A modification through modulating the level of m6A regulator
Crosstalk Summary The transcription factor ETS1 recruited p300 and WDR5 which separately mediated Histone H3 lysine 27 acetylation (H3K27ac) and H3K4me3 histone modification in the promoter of METTL3 and induced METTL3 transcription activation. Furthermore, we identified TXNDC5 as a target of METTL3-mediated m6A modification through MeRIP-seq, and revealed that METTL3-mediated TXNDC5 expression relied on the m6A reader-dependent manner. METTL3/YTHDF2 promoted the degradation of Circ_RNF13 and subsequently affected the stability of CXC motif chemokine ligand 1 (CXCL1), ultimately enhancing the radiosensitivity of CC cells.
Responsed Disease Cervical cancer ICD-11: 2C77
In-vitro Model
SiHa Cervical squamous cell carcinoma Homo sapiens CVCL_0032
C-4-I Cervical squamous cell carcinoma Homo sapiens CVCL_2253
HeLa Endocervical adenocarcinoma Homo sapiens CVCL_0030
C-33 A Cervical squamous cell carcinoma Homo sapiens CVCL_1094
In-vivo Model Stably transfected cell lines were created by silencing circRNF13 in CC SiHa cells. Once xenografts were established, the tumors reached an approximate volume of 200 mm3. A single dose of 15 Gy irradiation was administered to female BALB/c nude mice (4-5 weeks old) in the murine model. The tumor volume was measured and recorded using vernier calipers every five days after irradiation. After 30 days, the mice were euthanized under anesthesia, and tumor tissue was collected for further investigations.
Full List of Potential Compound(s) Related to This m6A-centered Crosstalk
Histone acetyltransferase p300 (P300) 2 Compound(s) Regulating the Target Click to Show/Hide the Full List
 Compound Name CCS1477 Phase 1/2 [3]
Synonyms
CCS-1477; CBP-IN-1; 2222941-37-7; (S)-1-(3,4-Difluorophenyl)-6-(5-(3,5-dimethylisoxazol-4-yl)-1-((1r,4S)-4-methoxycyclohexyl)-1H-benzo[d]imidazol-2-yl)piperidin-2-one; SCHEMBL20094038; SCHEMBL21515367; SCHEMBL22134021; EX-A3687; NSC818619; NSC-818619; HY-111784; CS-0091862; (S)-1-(3,4-Difluorophenyl)-6-(5-(3,5-dimethylisoxazol-4-yl)-1-(trans-4-methoxycyclohexyl)-1H-benzo[d]imidazol-2-yl)piperidin-2-one
    Click to Show/Hide
MOA Inhibitor
External Link
 Compound Name FT-7051 Phase 1 [4]
MOA Inhibitor
External Link
References
Ref 1 METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene. 2022 Sep;41(39):4420-4432. doi: 10.1038/s41388-022-02435-2. Epub 2022 Aug 20.
Ref 2 circRNF13, a novel N(6)-methyladenosine-modified circular RNA, enhances radioresistance in cervical cancer by increasing CXCL1 mRNA stability. Cell Death Discov. 2023 Jul 20;9(1):253. doi: 10.1038/s41420-023-01557-0.
Ref 3 Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov. 2021 May;11(5):1118-1137. doi: 10.1158/2159-8290.CD-20-0751. Epub 2021 Jan 11.
Ref 4 Clinical pipeline report, company report or official report of FORMA Therapeutics.