General Information of the m6A Target Gene (ID: M6ATAR00792)
Target Name KRT7-AS
Gene Name KRT7-AS
Chromosomal Location 12q13.13
Gene ID 109729127
HGNC ID
HGNC:52643
Ensembl Gene ID
ENSG00000257671
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
KRT7-AS can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line HUVEC cell line Homo sapiens
Treatment: shMETTL3 HUVEC cells
Control: shScramble HUVEC cells
GSE157544
Regulation
logFC: -5.89E-01
p-value: 3.54E-03
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between KRT7-AS and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 8.95E+00 GSE60213
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary Specifically, increased METTL3 methylated KRT7-AS at A877 to increase the stability of a KRT7-AS/KRT7 mRNA duplex via IGF2BP1/HuR complexes. m6A promotes breast cancer lung metastasis by increasing the stability of a KRT7-AS/KRT7 mRNA duplex and translation of KRT7.
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Cell Process Lung Metastasis
In-vitro Model MDA-MB-231 Breast adenocarcinoma Homo sapiens CVCL_0062
BT-549 Invasive breast carcinoma Homo sapiens CVCL_1092
In-vivo Model First, subcutaneous transplanted model was used to evaluate the growth of BT-549LMF3 and BT-549 cells. Cells (5 × 106 per mouse, n = 5 for each group) were diluted in 200 ul PBS + 200 ul Matrigel (BD Biosciences) and subcutaneously injected into immunodeficient female mice. Second, subcutaneous transplanted model was used to evaluate the metastasis potential of BT-549LMF3 and BT-549 cells. Cells (5 × 106 per mouse, n = 5 for each group) were diluted in 200 ul PBS + 200 ul Matrigel (BD Biosciences) and subcutaneously injected into immunodeficient female mice. Third, the in vivo lung metastasis model was established by injecting with BT-549, BT-549LMF3, FTO stable BT-549LMF3, sh-METTL3 BT-549LMF3, and sh-KRT7 BT-549LMF3 stable cells (1 × 106 per mouse, n = 5 for each group)
Breast cancer [ICD-11: 2C60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary Specifically, increased METTL3 methylated KRT7-AS at A877 to increase the stability of a KRT7-AS/KRT7 mRNA duplex via IGF2BP1/HuR complexes. m6A promotes breast cancer lung metastasis by increasing the stability of a KRT7-AS/KRT7 mRNA duplex and translation of KRT7.
Responsed Disease Breast cancer [ICD-11: 2C60]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Cell Process Lung Metastasis
In-vitro Model MDA-MB-231 Breast adenocarcinoma Homo sapiens CVCL_0062
BT-549 Invasive breast carcinoma Homo sapiens CVCL_1092
In-vivo Model First, subcutaneous transplanted model was used to evaluate the growth of BT-549LMF3 and BT-549 cells. Cells (5 × 106 per mouse, n = 5 for each group) were diluted in 200 ul PBS + 200 ul Matrigel (BD Biosciences) and subcutaneously injected into immunodeficient female mice. Second, subcutaneous transplanted model was used to evaluate the metastasis potential of BT-549LMF3 and BT-549 cells. Cells (5 × 106 per mouse, n = 5 for each group) were diluted in 200 ul PBS + 200 ul Matrigel (BD Biosciences) and subcutaneously injected into immunodeficient female mice. Third, the in vivo lung metastasis model was established by injecting with BT-549, BT-549LMF3, FTO stable BT-549LMF3, sh-METTL3 BT-549LMF3, and sh-KRT7 BT-549LMF3 stable cells (1 × 106 per mouse, n = 5 for each group)
References
Ref 1 N(6) -Methyladenosine Regulates mRNA Stability and Translation Efficiency of KRT7 to Promote Breast Cancer Lung Metastasis. Cancer Res. 2021 Jun 1;81(11):2847-2860. doi: 10.1158/0008-5472.CAN-20-3779. Epub 2021 Apr 1.