General Information of the m6A Target Gene (ID: M6ATAR00331)
Target Name Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II)
Synonyms
Autophagy-related protein LC3 B; Autophagy-related ubiquitin-like modifier LC3 B; MAP1 light chain 3-like protein 2; MAP1A/MAP1B light chain 3 B; MAP1A/MAP1B LC3 B; Microtubule-associated protein 1 light chain 3 beta; MAP1ALC3
    Click to Show/Hide
Gene Name MAP1LC3B
Chromosomal Location 16q24.2
Family ATG8 family
Function
Ubiquitin-like modifier involved in formation of autophagosomal vacuoles (autophagosomes). Plays a role in mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. In response to cellular stress and upon mitochondria fission, binds C-18 ceramides and anchors autophagolysosomes to outer mitochondrial membranes to eliminate damaged mitochondria. While LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation. Promotes primary ciliogenesis by removing OFD1 from centriolar satellites via the autophagic pathway. Through its interaction with the reticulophagy receptor TEX264, participates in the remodeling of subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover . Upon nutrient stress, directly recruits cofactor JMY to the phagophore membrane surfaces and promotes JMY's actin nucleation activity and autophagosome biogenesis during autophagy .
    Click to Show/Hide
Gene ID 81631
Uniprot ID
MLP3B_HUMAN
HGNC ID
HGNC:13352
Ensembl Gene ID
ENSG00000140941
KEGG ID
hsa:81631
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
MAP1LC3B can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
Methyltransferase-like 3 (METTL3) [WRITER]
Representative RNA-seq result indicating the expression of this target gene regulated by METTL3
Cell Line LX2 cell line Homo sapiens
Treatment: shMETTL3 LX2 cells
Control: shLuc LX2 cells
GSE207909
Regulation
logFC: 6.38E-01
p-value: 4.93E-09
More Results Click to View More RNA-seq Results
Representative RIP-seq result supporting the interaction between MAP1LC3B and the regulator
Cell Line MDA-MB-231 Homo sapiens
Regulation logFC: 1.34E+00 GSE60213
In total 4 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary Knocking down METTL3 prevented Enterovirus 71-induced cell death and suppressed Enterovirus 71-induced expression of Bax while rescuing Bcl-2 expression after Enterovirus 71 infection. Knocking down METTL3 inhibited Enterovirus 71-induced expression of Atg5, Atg7 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). Knocking down METTL3 inhibited Enterovirus 71-induced apoptosis and autophagy.
Target Regulation Up regulation
Responsed Disease Enterovirus ICD-11: 1A2Y
Pathway Response Autophagy hsa04140
Cell Process Cell proliferation and metastasis
Cell apoptosis
Cell autophagy
In-vitro Model Schwann cells (A type of glial cell that surrounds neurons)
Experiment 2 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Chloroquine Approved
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Experiment 3 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Gefitinib Approved
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Experiment 4 Reporting the m6A Methylation Regulator of This Target Gene [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Responsed Drug Beta-Elemen Phase 3
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Enterovirus [ICD-11: 1A2Y]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary Knocking down METTL3 prevented Enterovirus 71-induced cell death and suppressed Enterovirus 71-induced expression of Bax while rescuing Bcl-2 expression after Enterovirus 71 infection. Knocking down METTL3 inhibited Enterovirus 71-induced expression of Atg5, Atg7 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). Knocking down METTL3 inhibited Enterovirus 71-induced apoptosis and autophagy.
Responsed Disease Enterovirus [ICD-11: 1A2Y]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Pathway Response Autophagy hsa04140
Cell Process Cell proliferation and metastasis
Cell apoptosis
Cell autophagy
In-vitro Model Schwann cells (A type of glial cell that surrounds neurons)
Lung cancer [ICD-11: 2C25]
In total 3 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Chloroquine Approved
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Experiment 2 Reporting the m6A-centered Disease Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Gefitinib Approved
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Experiment 3 Reporting the m6A-centered Disease Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Responsed Disease Non-small-cell lung carcinoma [ICD-11: 2C25.Y]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Beta-Elemen Phase 3
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Chloroquine [Approved]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Gefitinib [Approved]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
Beta-Elemen [Phase 3]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [2]
Response Summary METTL3 could positively regulate the autophagy by targeting the autophagy-related genes such as ATG5, ATG7, LC3B, and SQSTM1. beta-elemene inhibited the autophagy flux by preventing autophagic lysosome acidification, resulting in increasing expression of SQSTM1 and Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B/LC3B-II). beta-elemene could reverse gefitinib resistance in non-small cell lung cancer cells by inhibiting cell autophagy process in a manner of chloroquine. METTL3-mediated autophagy in reversing gefitinib resistance of NSCLC cells by beta-elemene, which shed light on providing potential molecular-therapy target and clinical-treatment method in NSCLC patients with gefitinib resistance.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Non-small-cell lung carcinoma ICD-11: 2C25.Y
Pathway Response Autophagy hsa04140
Cell Process Autophagic lysosome acidification
In-vitro Model Gefitinib-resistant cell line HCC827GR (Gefitinib-resistant HCC827 cell line)
Gefitinib-resistant cell line PC9GR (Gefitinib-resistant PC9 cell line)
HCC827 Lung adenocarcinoma Homo sapiens CVCL_2063
PC-9 Lung adenocarcinoma Homo sapiens CVCL_B260
In-vivo Model NSCLC gefitinib-resistant cells (5 × 106 cells in 100 uL PBS) were injected subcutaneously into the lateral surface of the left abdomen of 6-week-old female BALB/c nude mice (at least five mice per group to ensure accuracy).
References
Ref 1 Knockdown of METTL3 inhibits enterovirus 71-induced apoptosis of mouse Schwann cell through regulation of autophagy. Pathog Dis. 2021 Jul 28;79(6):ftab036. doi: 10.1093/femspd/ftab036.
Ref 2 The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by Beta-elemene. Cell Death Dis. 2020 Nov 11;11(11):969. doi: 10.1038/s41419-020-03148-8.