General Information of the m6A Target Gene (ID: M6ATAR00028)
Target Name hsa-miR-221-3p
Synonyms
hsa_miR_221_3p
    Click to Show/Hide
Gene Name hsa-miR-221-3p
miRBase ID
MIMAT0000278
Full List of m6A Methylation Regulator of This Target Gene and Corresponding Disease/Drug Response(s)
hsa-miR-221-3p can be regulated by the following regulator(s), and cause disease/drug response(s). You can browse detail information of regulator(s) or disease/drug response(s).
Browse Regulator
Browse Disease
Browse Drug
Methyltransferase-like 3 (METTL3) [WRITER]
In total 1 item(s) under this regulator
Experiment 1 Reporting the m6A Methylation Regulator of This Target Gene [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating hsa-miR-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Che-1 axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Responsed Drug Doxil Approved
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
Breast cancer [ICD-11: 2C60]
In total 1 item(s) under this disease
Experiment 1 Reporting the m6A-centered Disease Response [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating hsa-miR-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Che-1 axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Responsed Disease Breast cancer [ICD-11: 2C60]
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Drug Doxil Approved
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
Doxil [Approved]
In total 1 item(s) under this drug
Experiment 1 Reporting the m6A-centered Drug Response [1]
Response Summary METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating hsa-miR-221-3p maturation in a m6A-dependent manner. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Identified the METTL3/miR-221-3p/HIPK2/Che-1 axis as a novel signaling event that will be responsible for resistance of BC cells to ADR.
Target Regulator Methyltransferase-like 3 (METTL3) WRITER
Target Regulation Up regulation
Responsed Disease Breast cancer ICD-11: 2C60
Cell Process Cell growth and death
Cell apoptosis
In-vitro Model ADR-resistant MCF-7 (MCF-7/ADR) cells (Human breast cancer doxorubicin-resistant cell line)
MCF-7 Invasive breast carcinoma Homo sapiens CVCL_0031
MCF-10A Normal Homo sapiens CVCL_0598
In-vivo Model Cell suspensions (2 × 106 cells/mL) made with MCF-7/ADR cells stably expressing METTL3 and/or miR-221-3p inhibitor were subcutaneously implanted into each mouse. One week later, xenografted mice were injected with 0.1 mL ADR (25 mg/kg, intraperitoneal injection) twice a week.
References
Ref 1 METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 2021 Jan;53(1):91-102. doi: 10.1038/s12276-020-00510-w. Epub 2021 Jan 8.